Question

In: Statistics and Probability

The weights of a random sample of 121 women between the ages of 25 and 34...

The weights of a random sample of 121 women between the ages of 25 and 34 had a standard deviation of 12 pounds. The weights of 121 women between the ages of 55 and 64 had a standard deviation 15 pounds. Test the claim that the older women are from a population with a standard deviation greater than that for women in the 25 to 34 age group. Use α = 0.05.

Solutions

Expert Solution

Given

(5) Conclusion

It is concluded that the null hypothesis Ho is rejected. Therefore, there is enough evidence to claim that the population variance σ12​ is less than the population variance σ22​, at the α=0.05 significance level.


Related Solutions

Random samples of people ages 15−24 and of people ages 25−34 were asked about their preferred...
Random samples of people ages 15−24 and of people ages 25−34 were asked about their preferred method of (remote) communication with friends. The respondents were asked to select one of the methods from the following list: cell phone, instant message, e-mail, other. Preferred Communication Method Age Cell Phone Instant Message Email Other Row Total 15-24 47 45 3 5 100 25-34 43 28 16 13 100 Column Total 90 73 19 18 200 (i) Make a cluster bar graph showing...
A random sample of 100 Ohio businesses showed that 34 were owned by women. A sample...
A random sample of 100 Ohio businesses showed that 34 were owned by women. A sample of 200 New Jersey businesses showed that 64 were owned by women. Construct a 90% confidence interval for the difference in proportions of women-owned business in the two states. Use u(Ohio - u(New Jersey)
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 64.1 inches. A random sample of fifty women in this age group is selected. What is the probability that the mean height for the sample is greater than sixtyfive ​inches? Assume sigmaσequals=2.75 The probability that the mean height for the sample is greater than sixtyfive inches is
The mean height of women in a country? (ages 20minus?29) is 64.4 inches. A random sample...
The mean height of women in a country? (ages 20minus?29) is 64.4 inches. A random sample of 55 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ?inches? Assume sigmaequals2.54. The probability that the mean height for the sample is greater than 65 inches is
The mean height of women in a country​ (ages 20minus−​29) is 63.6 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 63.6 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 6464 ​inches? Assume sigmaσequals=2.87. The probability that the mean height for the sample is greater than 64 inches ​(Round to four decimal places as​ needed.)
The mean height of women in a country​ (ages 20minus−​29) is 63.8 inches. A random sample...
The mean height of women in a country​ (ages 20minus−​29) is 63.8 inches. A random sample of 55 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume sigmaσequals=2.65. The probability that the mean height for the sample is greater than 64 inches is
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65​ inches? Assume σ equals=2.58. Round to four decimal places.
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample...
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ?inches? Assume ?=2.74 The probability that the mean height for the sample is greater than 64 inches is ___ ?
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample of 70 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume σ=2.58. The probability that the mean height for the sample is greater than 65 inches is ______ . (Round to four decimal places as​ needed.)
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume σ=2.75. The probability that the mean height for the sample is greater than 64 inches is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT