Question

In: Statistics and Probability

A population has a mean of 200 and a standard deviation of 60. Suppose a sample...

A population has a mean of 200 and a standard deviation of 60. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table.

  1. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)

  2. What is the probability that the sample mean will be within +/- 17 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)

Solutions

Expert Solution

The solution is done showing all steps with calculations and required explanations. Hope you can understand and will appreciate the work.

z table -


Related Solutions

A population has a mean of 200 and a standard deviation of 60. Suppose a sample...
A population has a mean of 200 and a standard deviation of 60. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 17 of the population mean (to 4 decimals)? (Round...
A population has a mean of 400 and a standard deviation of 60. Suppose a sample...
A population has a mean of 400 and a standard deviation of 60. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 200 and a standard deviation of 70. Suppose a sample...
A population has a mean of 200 and a standard deviation of 70. Suppose a sample of size 100 is selected and is used to estimate . Use z-tableWhat is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)What is the probability that the sample mean will be within +/- 19 of the population mean
A population has a mean of 200 and a standard deviation of 70. Suppose a sample...
A population has a mean of 200 and a standard deviation of 70. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean What is the probability that the sample mean will be within +/- 17 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)
A population has a mean of 200 and a standard deviation of 50. Suppose a sample...
A population has a mean of 200 and a standard deviation of 50. Suppose a sample of size 100 is selected and x-bar is used to estimate μ. What is the probability that the sample mean will be within ±15 of the population mean? State your answer as a decimal with 4 decimal places.
A population has a mean of 200 and a standard deviation of 70. Suppose a sample...
A population has a mean of 200 and a standard deviation of 70. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 11 of the population mean (to 4 decimals)? (Round...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample of size 125 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 14 of the population mean (to 4 decimals)? (Round...
A population has a mean of 800 and a standard deviation of 200. Suppose a sample...
A population has a mean of 800 and a standard deviation of 200. Suppose a sample of size 400 is selected and x is used to estimate μ. (Round your answers to four decimal places.) (a) What is the probability that the sample mean will be within ±5 of the population mean? (b) What is the probability that the sample mean will be within ±10 of the population mean? A simple random sample of 90 items resulted in a sample...
A population has a mean of 400 and a standard deviation of 70. Suppose a sample...
A population has a mean of 400 and a standard deviation of 70. Suppose a sample of size 125 is selected. Use z-table. a. What is the probability that the sample mean will be within +4 or -4 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +10 0r -10 of the population mean (to 4 decimals)?
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)? (Round z...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT