Question

In: Statistics and Probability

In a completely randomized design, 12 experimental units were used for the first treatment, 15 for...

In a completely randomized design, 12 experimental units were used for the first treatment, 15 for the second treatment, and 20 for the third treatment. Complete the following analysis of variance (to 2 decimals, if necessary). Round p-value to four decimal places. If your answer is zero enter "0".

Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value
Treatments 1,300
Error
Total 2,000


At a .05 level of significance, is there a significant difference between the treatments?

The p-value is Selectless than .01between .01 and .025between .025 and .05between .05 and .10greater than .10Item 9

What is your conclusion?
SelectConclude not all treatment means are equalCannot reject the assumption all treatment means are equal

Solutions

Expert Solution

Answer:

From given information

The sum of squares for error is

SSE = SST-SSTR

SSE = 2000-1300

SSE = 700

Degree of freedom:

Here

N = 12+15+20

N = 47

df(treatment) = k-1

df(treatment) = 3-1

df(treatment) = 2

df(total) = N -1

df(total) = 47-1

df(total) = 46

df(error) = N - K

df(error) = 47-3

df(error) = 44

Now to find the mean square error:

MSE = SSE /N-k

MSE = 700/ 47-3

MSE = 700/ 44

MSE = 15.909

Therefore the mean squrae error is 15.909

Now to find the mean square treatment:

MSTR = SSTR/(k-1)

MSTR = 1300/(3-1)

MSTR = 1300/2

MSTR = 650

Therefore the mean square treatment is 650

Now to find the F- statistic:

F- statistic = MSTR / MSE

F- statistic = 650/ 15.909

F- statistic = 40.8574

Therefore the value of F- statistic is 40.8574

Now to find the P- Value:

P- value = 0.0000

Source of Variations Sum of Squares Degrees of freedom Mean square F P- Value
Treatment 1300 2 650   40.8574 0.0000
Error 700 44 15.909
Total 2000 46

The P- Value is less than 0.01

Decision:

P -Value <

0.0000 < 0.05

Since the P -Value is less than significance level.Therefore we reject the null hypothesis(H0) at 0.05 level of significance.

Conclusion:

Conclude not all treatment means are equal.


Related Solutions

In a completely randomized design, 12 experimental units were used for the first treatment, 15 for...
In a completely randomized design, 12 experimental units were used for the first treatment, 15 for the second treatment, and 20 for the third treatment. Complete the following analysis of variance (to 2 decimals, if necessary). Round p-value to four decimal places. If your answer is zero enter "0". Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value Treatments 1,300 Error Total 1,800 At a .05 level of significance, is there a significant difference between the...
In a completely randomized design, 11 experimental units were used for the first treatment, 19 for...
In a completely randomized design, 11 experimental units were used for the first treatment, 19 for the second treatment, and 20 for the third treatment. Complete the following analysis of variance. (Round your values for MSE and F to two decimal places, and your p-value to four decimal places.) Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value Treatments 1,500 Error Total 2,100 At a 0.05 level of significance, is there a significant difference between the...
In a completely randomized design, six experimental units were used for each of the three levels...
In a completely randomized design, six experimental units were used for each of the three levels of the factor. (2 points each; 6 points total) Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatment Error 432076.5 Total 675643.3 Complete the ANOVA table. Find the critical value at the 0.05 level of significance from the F table for testing whether the population means for the three levels of the factors are different. Use the critical value approach...
In a completely randomized design, seven experimental units were used for each of the five levels...
In a completely randomized design, seven experimental units were used for each of the five levels of the factor. Complete the following ANOVA table (to 2 decimals, if necessary). If your answer is zero enter "0". Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value Treatments Error Total a. What hypotheses are implied in this problem : - Select your answer -Not all five treatment means are equalAll five treatment means are equalItem 9 : -...
In a completely randomized design, six experimental units were used for each of the three levels...
In a completely randomized design, six experimental units were used for each of the three levels of the factor. (2 points each; 6 points total) Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatment Error 432076.5 Total 675643.3 Complete the ANOVA table. Find the critical value at the 0.05 level of significance from the F table for testing whether the population means for the three levels of the factors are different. Use the critical value approach...
7) In a completely randomized design, 4 experimental units were used for each of the seven...
7) In a completely randomized design, 4 experimental units were used for each of the seven levels of the factor. Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatment 385.12 Error Total 1563.71 Source of Variation Sum of Squares Degrees of Freedom Mean Square F Treatment 385.12 Error Total 1563.71 i. Complete the ANOVA table. ii. Find the F critical, and use the critical value approach at α = 0.05 to test whether the population means...
3. In a completely randomized design, 7 experimental units were used for each of the three...
3. In a completely randomized design, 7 experimental units were used for each of the three levels of the factor. Source of Variation Sum of Squares Degrees of Freedom Mean Square F Between Treatment Error(within treatment) 432076.5 Total 675643.3 a. Complete the ANOVA table. b. Find the critical value at the 0.05 level of significance from the F table for testing whether the population means for the three levels of the factors are different. c. Use the critical value approach...
Canada Question 4 Marks) In a completely randomized design, 7 experimental units were used for each...
Canada Question 4 Marks) In a completely randomized design, 7 experimental units were used for each of the three levels of the factor. Source of Variation Between Treatment Within Treatment Total Sum of Squares 60 76 a. Complete the ANOVA table. b. Degrees of Freedom 24 Find the critical value at the 0.05 level of significance from the F table and test whether the population means are different.
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32 44 34 30 43 37 30 44 36 26 46 37 32 48 41 Sample mean 30 45 37 Sample variance 6 4 6.5 At the = .05 level of significance, can we reject the null hypothesis that the means of the three treatments are equal? Compute the values below (to 1 decimal, if necessary). Sum of Squares, Treatment Sum of Squares, Error Mean...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32 44 34 30 43 37 30 44 36 26 46 37 32 48 41 Sample mean 30 45 37 Sample variance 6 4 6.5 a. At the level of significance, can we reject the null hypothesis that the means of the three treatments are equal? Compute the values below (to 1 decimal, if necessary). Sum of Squares, Treatment Sum of Squares, Error Mean Squares,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT