In: Statistics and Probability
| Student | Sex | math | physic | chem |
| 401 | F | 83 | 53 | 60 |
| 402 | M | 66 | 58 | 61 |
| 403 | F | 78 | 49 | 62 |
| 404 | M | 71 | 66 | 60 |
| 405 | F | 77 | 43 | 46 |
| 406 | M | 71 | 49 | 50 |
| 407 | F | 80 | 54 | 59 |
| 408 | M | 70 | 60 | 58 |
| 409 | F | 82 | 54 | 56 |
| 410 | M | 70 | 52 | 57 |
| 411 | F | 80 | 48 | 52 |
| 412 | M | 70 | 53 | 47 |
| 413 | F | 80 | 48 | 47 |
| 414 | M | 68 | 50 | 58 |
| 415 | F | 82 | 62 | 60 |
| 416 | M | 71 | 55 | 51 |
| 417 | F | 76 | 55 | 66 |
| 418 | M | 78 | 65 | 46 |
| 419 | F | 82 | 55 | 54 |
| 420 | M | 67 | 47 | 52 |
| 421 | F | 78 | 48 | 52 |
| 422 | M | 64 | 57 | 60 |
| 423 | F | 79 | 52 | 56 |
| 424 | M | 73 | 52 | 51 |
| 425 | F | 82 | 50 | 57 |
| 426 | M | 69 | 65 | 64 |
| 427 | F | 77 | 49 | 55 |
| 428 | M | 73 | 52 | 51 |
| 429 | F | 81 | 58 | 60 |
| 430 | M | 70 | 53 | 53 |
| 431 | F | 76 | 56 | 56 |
| 432 | M | 70 | 49 | 51 |
| 433 | F | 92 | 68 | 60 |
| 434 | M | 73 | 58 | 52 |
| 435 | F | 82 | 56 | 59 |
| 436 | M | 79 | 63 | 41 |
| 437 | F | 83 | 48 | 50 |
| 438 | M | 74 | 58 | 46 |
| 439 | F | 74 | 52 | 48 |
| 440 | M | 64 | 54 | 51 |
| 441 | F | 78 | 57 | 52 |
| 442 | M | 69 | 51 | 54 |
| 443 | F | 82 | 55 | 50 |
| 444 | M | 68 | 64 | 64 |
| 445 | F | 77 | 52 | 58 |
| 446 | M | 72 | 56 | 53 |
| 447 | F | 85 | 54 | 47 |
| 448 | M | 59 | 46 | 62 |
| 449 | F | 84 | 67 | 46 |
| 450 | M | 81 | 63 | 49 |
| 451 | F | 81 | 51 | 58 |
| 452 | M | 67 | 51 | 59 |
| 453 | F | 79 | 63 | 52 |
| 454 | M | 67 | 51 | 53 |
| 455 | F | 76 | 49 | 54 |
| 456 | M | 65 | 48 | 55 |
| 457 | F | 78 | 59 | 53 |
| 458 | M | 71 | 55 | 55 |
| 459 | F | 80 | 47 | 47 |
| 460 | M | 75 | 64 | 59 |
| 461 | F | 84 | 59 | 48 |
| 462 | M | 74 | 52 | 49 |
| 463 | F | 75 | 52 | 50 |
| 464 | M | 62 | 56 | 71 |
| 465 | F | 81 | 57 | 51 |
| 466 | M | 64 | 43 | 54 |
| 467 | F | 77 | 51 | 55 |
| 468 | M | 68 | 45 | 50 |
| 469 | F | 80 | 47 | 58 |
| 470 | M | 64 | 44 | 55 |
| 471 | F | 70 | 41 | 57 |
| 472 | M | 73 | 64 | 61 |
| 473 | F | 83 | 65 | 55 |
| 474 | M | 71 | 53 | 51 |
| 475 | F | 82 | 48 | 58 |
| 476 | M | 71 | 59 | 59 |
| 477 | F | 70 | 58 | 59 |
| 478 | M | 74 | 52 | 48 |
| 479 | F | 79 | 54 | 59 |
| 480 | M | 75 | 61 | 58 |
| 481 | F | 74 | 54 | 69 |
| 482 | M | 73 | 54 | 50 |
| 483 | F | 81 | 57 | 56 |
| 484 | M | 70 | 48 | 47 |
| 485 | F | 79 | 46 | 56 |
| 486 | M | 74 | 54 | 44 |
| 487 | F | 87 | 72 | 56 |
| 488 | M | 74 | 44 | 47 |
| 489 | F | 78 | 49 | 48 |
| 490 | M | 72 | 60 | 61 |
| 491 | F | 71 | 49 | 60 |
| 492 | M | 71 | 49 | 51 |
| 493 | F | 90 | 64 | 54 |
| 494 | M | 74 | 54 | 43 |
| 495 | F | 81 | 56 | 58 |
| 496 | M | 73 | 54 | 51 |
| 497 | F | 81 | 52 | 58 |
| 498 | M | 73 | 54 | 47 |
| 499 | F | 79 | 58 | 59 |
| 500 | M | 62 | 36 | 56 |
| 501 | F | 77 | 54 | 55 |
| 502 | M | 78 | 65 | 47 |
| 503 | F | 79 | 57 | 69 |
| 504 | M | 71 | 52 | 57 |
| 505 | F | 79 | 58 | 49 |
| 506 | M | 77 | 59 | 59 |
| 507 | F | 71 | 47 | 56 |
| 508 | M | 66 | 52 | 61 |
| 509 | F | 88 | 59 | 59 |
| 510 | M | 62 | 55 | 66 |
| 511 | F | 85 | 58 | 59 |
| 512 | M | 76 | 62 | 49 |
| 513 | F | 84 | 67 | 56 |
| 514 | M | 69 | 52 | 59 |
| 515 | F | 81 | 52 | 50 |
| 516 | M | 71 | 60 | 51 |
| 517 | F | 78 | 54 | 65 |
| 518 | M | 73 | 60 | 59 |
| 519 | F | 79 | 52 | 66 |
| 520 | M | 74 | 64 | 53 |
| 521 | F | 78 | 60 | 56 |
| 522 | M | 72 | 52 | 43 |
| 523 | F | 78 | 57 | 60 |
| 524 | M | 70 | 56 | 59 |
| 525 | F | 86 | 57 | 61 |
| 526 | M | 68 | 45 | 54 |
| 527 | F | 81 | 57 | 53 |
| 528 | M | 66 | 53 | 59 |
| 529 | F | 80 | 60 | 52 |
| 530 | M | 69 | 55 | 52 |
| 531 | F | 86 | 61 | 49 |
| 532 | M | 73 | 70 | 64 |
| 533 | F | 82 | 52 | 50 |
| 534 | M | 73 | 59 | 54 |
| 535 | F | 79 | 57 | 64 |
| 536 | M | 65 | 57 | 63 |
| 537 | F | 78 | 44 | 48 |
| 538 | M | 69 | 56 | 58 |
| 539 | F | 74 | 54 | 54 |
| 540 | M | 64 | 41 | 58 |
| 541 | F | 76 | 56 | 55 |
| 542 | M | 66 | 62 | 59 |
| 543 | F | 77 | 51 | 65 |
| 544 | M | 66 | 60 | 70 |
| 545 | F | 78 | 60 | 59 |
| 546 | M | 75 | 59 | 53 |
| 547 | F | 78 | 51 | 58 |
| 548 | M | 67 | 58 | 67 |
| 549 | F | 82 | 51 | 49 |
| 550 | M | 68 | 55 | 52 |
| 551 | F | 76 | 45 | 54 |
| 552 | M | 67 | 61 | 62 |
| 553 | F | 80 | 67 | 64 |
| 554 | M | 72 | 64 | 57 |
| 555 | F | 84 | 53 | 48 |
| 556 | M | 71 | 58 | 61 |
| 557 | F | 75 | 58 | 59 |
| 558 | M | 69 | 63 | 59 |
| 559 | F | 86 | 68 | 65 |
| 560 | M | 76 | 71 | 55 |
| 561 | F | 85 | 57 | 50 |
| 562 | M | 76 | 62 | 54 |
| 563 | F | 79 | 49 | 56 |
| 564 | M | 72 | 49 | 46 |
| 565 | F | 79 | 59 | 51 |
| 566 | M | 67 | 51 | 54 |
| 567 | F | 80 | 56 | 58 |
| 568 | M | 59 | 57 | 73 |
| 569 | F | 80 | 57 | 66 |
| 570 | M | 68 | 58 | 56 |
| 571 | F | 81 | 56 | 66 |
| 572 | M | 67 | 55 | 59 |
| 573 | F | 82 | 59 | 56 |
| 574 | M | 72 | 58 | 55 |
| 575 | F | 81 | 54 | 45 |
| 576 | M | 60 | 55 | 64 |
| 577 | F | 85 | 65 | 52 |
| 578 | M | 72 | 50 | 52 |
| 579 | F | 79 | 51 | 57 |
| 580 | M | 73 | 58 | 57 |
| 581 | F | 81 | 56 | 57 |
| 582 | M | 79 | 58 | 42 |
| 583 | F | 78 | 47 | 62 |
| 584 | M | 73 | 65 | 53 |
| 585 | F | 87 | 55 | 50 |
| 586 | M | 69 | 52 | 53 |
| 587 | F | 85 | 42 | 55 |
| 588 | M | 69 | 59 | 61 |
| 589 | F | 82 | 56 | 58 |
| 590 | M | 74 | 54 | 45 |
| 591 | F | 80 | 41 | 51 |
| 592 | M | 74 | 53 | 56 |
| 593 | F | 71 | 51 | 58 |
| 594 | M | 61 | 53 | 61 |
| 595 | F | 81 | 63 | 59 |
| 596 | M | 73 | 53 | 52 |
| 597 | F | 79 | 48 | 54 |
| 598 | M | 74 | 70 | 61 |
| 599 | F | 82 | 48 | 45 |
| 600 | M | 65 | 45 | 56 |
use the first 160 of your observations for question A, B,C and use the last 40 for question D
a.What is a 90% confidence interval for the correlation between Math and Physic?
b. Conduct a simple regression analysis with Math as your dependent variable and Chem as your independent variable. Discuss what you see/observe.
c.Conduct a multiple regression analysis with both Physic and Chem as your predictors. Discuss what you see/observe. Having done this, evaluate (and discuss) whether the incorporation of Sex into your model would be useful.
As mentioned we have to take only 160 observations for question A,B,C:
a.What is a 90% confidence interval for the correlation between Math and Physic?
| math | physic |
| 83 | 53 |
| 66 | 58 |
| 78 | 49 |
| 71 | 66 |
| 77 | 43 |
| 71 | 49 |
| 80 | 54 |
| 70 | 60 |
| 82 | 54 |
| 70 | 52 |
| 80 | 48 |
| 70 | 53 |
| 80 | 48 |
| 68 | 50 |
| 82 | 62 |
| 71 | 55 |
| 76 | 55 |
| 78 | 65 |
| 82 | 55 |
| 67 | 47 |
| 78 | 48 |
| 64 | 57 |
| 79 | 52 |
| 73 | 52 |
| 82 | 50 |
| 69 | 65 |
| 77 | 49 |
| 73 | 52 |
| 81 | 58 |
| 70 | 53 |
| 76 | 56 |
| 70 | 49 |
| 92 | 68 |
| 73 | 58 |
| 82 | 56 |
| 79 | 63 |
| 83 | 48 |
| 74 | 58 |
| 74 | 52 |
| 64 | 54 |
| 78 | 57 |
| 69 | 51 |
| 82 | 55 |
| 68 | 64 |
| 77 | 52 |
| 72 | 56 |
| 85 | 54 |
| 59 | 46 |
| 84 | 67 |
| 81 | 63 |
| 81 | 51 |
| 67 | 51 |
| 79 | 63 |
| 67 | 51 |
| 76 | 49 |
| 65 | 48 |
| 78 | 59 |
| 71 | 55 |
| 80 | 47 |
| 75 | 64 |
| 84 | 59 |
| 74 | 52 |
| 75 | 52 |
| 62 | 56 |
| 81 | 57 |
| 64 | 43 |
| 77 | 51 |
| 68 | 45 |
| 80 | 47 |
| 64 | 44 |
| 70 | 41 |
| 73 | 64 |
| 83 | 65 |
| 71 | 53 |
| 82 | 48 |
| 71 | 59 |
| 70 | 58 |
| 74 | 52 |
| 79 | 54 |
| 75 | 61 |
| 74 | 54 |
| 73 | 54 |
| 81 | 57 |
| 70 | 48 |
| 79 | 46 |
| 74 | 54 |
| 87 | 72 |
| 74 | 44 |
| 78 | 49 |
| 72 | 60 |
| 71 | 49 |
| 71 | 49 |
| 90 | 64 |
| 74 | 54 |
| 81 | 56 |
| 73 | 54 |
| 81 | 52 |
| 73 | 54 |
| 79 | 58 |
| 62 | 36 |
| 77 | 54 |
| 78 | 65 |
| 79 | 57 |
| 71 | 52 |
| 79 | 58 |
| 77 | 59 |
| 71 | 47 |
| 66 | 52 |
| 88 | 59 |
| 62 | 55 |
| 85 | 58 |
| 76 | 62 |
| 84 | 67 |
| 69 | 52 |
| 81 | 52 |
| 71 | 60 |
| 78 | 54 |
| 73 | 60 |
| 79 | 52 |
| 74 | 64 |
| 78 | 60 |
| 72 | 52 |
| 78 | 57 |
| 70 | 56 |
| 86 | 57 |
| 68 | 45 |
| 81 | 57 |
| 66 | 53 |
| 80 | 60 |
| 69 | 55 |
| 86 | 61 |
| 73 | 70 |
| 82 | 52 |
| 73 | 59 |
| 79 | 57 |
| 65 | 57 |
| 78 | 44 |
| 69 | 56 |
| 74 | 54 |
| 64 | 41 |
| 76 | 56 |
| 66 | 62 |
| 77 | 51 |
| 66 | 60 |
| 78 | 60 |
| 75 | 59 |
| 78 | 51 |
| 67 | 58 |
| 82 | 51 |
| 68 | 55 |
| 76 | 45 |
| 67 | 61 |
| 80 | 67 |
| 72 | 64 |
| 84 | 53 |
| 71 | 58 |
| 75 | 58 |
| 69 | 63 |
| 86 | 68 |
| 76 | 71 |
hence, correlation between math and physic is calculated in excel using CORREL(array1,array2):
=CORREL(C2:C161,D2:D161)=
| 0.293303 |
Z=
Z=
Z=0.302
Zc=1.645
SE=
SE=
SE=0.0798
CI=(Z-Zc*SE,Z+Zc*SE)
CI=(0.302-1.645*0.0798, 0.302+1.645*0.0798)
CI=[0.1693, 0.4082]
b. Conduct a simple regression analysis with Math as your dependent variable and Chem as your independent variable. Discuss what you see/observe:
We have:
| CHEM | MATHS | CHEM*MATHS | CHEM2 | MATHS2 | |
| 60 | 83 | 4980 | 3600 | 6889 | |
| 61 | 66 | 4026 | 3721 | 4356 | |
| 62 | 78 | 4836 | 3844 | 6084 | |
| 60 | 71 | 4260 | 3600 | 5041 | |
| 46 | 77 | 3542 | 2116 | 5929 | |
| 50 | 71 | 3550 | 2500 | 5041 | |
| 59 | 80 | 4720 | 3481 | 6400 | |
| 58 | 70 | 4060 | 3364 | 4900 | |
| 56 | 82 | 4592 | 3136 | 6724 | |
| 57 | 70 | 3990 | 3249 | 4900 | |
| 52 | 80 | 4160 | 2704 | 6400 | |
| 47 | 70 | 3290 | 2209 | 4900 | |
| 47 | 80 | 3760 | 2209 | 6400 | |
| 58 | 68 | 3944 | 3364 | 4624 | |
| 60 | 82 | 4920 | 3600 | 6724 | |
| 51 | 71 | 3621 | 2601 | 5041 | |
| 66 | 76 | 5016 | 4356 | 5776 | |
| 46 | 78 | 3588 | 2116 | 6084 | |
| 54 | 82 | 4428 | 2916 | 6724 | |
| 52 | 67 | 3484 | 2704 | 4489 | |
| 52 | 78 | 4056 | 2704 | 6084 | |
| 60 | 64 | 3840 | 3600 | 4096 | |
| 56 | 79 | 4424 | 3136 | 6241 | |
| 51 | 73 | 3723 | 2601 | 5329 | |
| 57 | 82 | 4674 | 3249 | 6724 | |
| 64 | 69 | 4416 | 4096 | 4761 | |
| 55 | 77 | 4235 | 3025 | 5929 | |
| 51 | 73 | 3723 | 2601 | 5329 | |
| 60 | 81 | 4860 | 3600 | 6561 | |
| 53 | 70 | 3710 | 2809 | 4900 | |
| 56 | 76 | 4256 | 3136 | 5776 | |
| 51 | 70 | 3570 | 2601 | 4900 | |
| 60 | 92 | 5520 | 3600 | 8464 | |
| 52 | 73 | 3796 | 2704 | 5329 | |
| 59 | 82 | 4838 | 3481 | 6724 | |
| 41 | 79 | 3239 | 1681 | 6241 | |
| 50 | 83 | 4150 | 2500 | 6889 | |
| 46 | 74 | 3404 | 2116 | 5476 | |
| 48 | 74 | 3552 | 2304 | 5476 | |
| 51 | 64 | 3264 | 2601 | 4096 | |
| 52 | 78 | 4056 | 2704 | 6084 | |
| 54 | 69 | 3726 | 2916 | 4761 | |
| 50 | 82 | 4100 | 2500 | 6724 | |
| 64 | 68 | 4352 | 4096 | 4624 | |
| 58 | 77 | 4466 | 3364 | 5929 | |
| 53 | 72 | 3816 | 2809 | 5184 | |
| 47 | 85 | 3995 | 2209 | 7225 | |
| 62 | 59 | 3658 | 3844 | 3481 | |
| 46 | 84 | 3864 | 2116 | 7056 | |
| 49 | 81 | 3969 | 2401 | 6561 | |
| 58 | 81 | 4698 | 3364 | 6561 | |
| 59 | 67 | 3953 | 3481 | 4489 | |
| 52 | 79 | 4108 | 2704 | 6241 | |
| 53 | 67 | 3551 | 2809 | 4489 | |
| 54 | 76 | 4104 | 2916 | 5776 | |
| 55 | 65 | 3575 | 3025 | 4225 | |
| 53 | 78 | 4134 | 2809 | 6084 | |
| 55 | 71 | 3905 | 3025 | 5041 | |
| 47 | 80 | 3760 | 2209 | 6400 | |
| 59 | 75 | 4425 | 3481 | 5625 | |
| 48 | 84 | 4032 | 2304 | 7056 | |
| 49 | 74 | 3626 | 2401 | 5476 | |
| 50 | 75 | 3750 | 2500 | 5625 | |
| 71 | 62 | 4402 | 5041 | 3844 | |
| 51 | 81 | 4131 | 2601 | 6561 | |
| 54 | 64 | 3456 | 2916 | 4096 | |
| 55 | 77 | 4235 | 3025 | 5929 | |
| 50 | 68 | 3400 | 2500 | 4624 | |
| 58 | 80 | 4640 | 3364 | 6400 | |
| 55 | 64 | 3520 | 3025 | 4096 | |
| 57 | 70 | 3990 | 3249 | 4900 | |
| 61 | 73 | 4453 | 3721 | 5329 | |
| 55 | 83 | 4565 | 3025 | 6889 | |
| 51 | 71 | 3621 | 2601 | 5041 | |
| 58 | 82 | 4756 | 3364 | 6724 | |
| 59 | 71 | 4189 | 3481 | 5041 | |
| 59 | 70 | 4130 | 3481 | 4900 | |
| 48 | 74 | 3552 | 2304 | 5476 | |
| 59 | 79 | 4661 | 3481 | 6241 | |
| 58 | 75 | 4350 | 3364 | 5625 | |
| 69 | 74 | 5106 | 4761 | 5476 | |
| 50 | 73 | 3650 | 2500 | 5329 | |
| 56 | 81 | 4536 | 3136 | 6561 | |
| 47 | 70 | 3290 | 2209 | 4900 | |
| 56 | 79 | 4424 | 3136 | 6241 | |
| 44 | 74 | 3256 | 1936 | 5476 | |
| 56 | 87 | 4872 | 3136 | 7569 | |
| 47 | 74 | 3478 | 2209 | 5476 | |
| 48 | 78 | 3744 | 2304 | 6084 | |
| 61 | 72 | 4392 | 3721 | 5184 | |
| 60 | 71 | 4260 | 3600 | 5041 | |
| 51 | 71 | 3621 | 2601 | 5041 | |
| 54 | 90 | 4860 | 2916 | 8100 | |
| 43 | 74 | 3182 | 1849 | 5476 | |
| 58 | 81 | 4698 | 3364 | 6561 | |
| 51 | 73 | 3723 | 2601 | 5329 | |
| 58 | 81 | 4698 | 3364 | 6561 | |
| 47 | 73 | 3431 | 2209 | 5329 | |
| 59 | 79 | 4661 | 3481 | 6241 | |
| 56 | 62 | 3472 | 3136 | 3844 | |
| Sum = | 5432 | 7503 | 407045 | 298234 | 567003 |
Based on the above table, the following is calculated:





Therefore, based on the above calculations, the regression coefficients (the slope m, and the y-intercept n) are obtained as follows:


Therefore, we find that the regression equation is:
MATHS = 83.9119 - 0.1635 CHEM
We observe that for every 1 mark increase in chemistry there is a deduction of 0.1635 marks in mathematics.
c.Conduct a multiple regression analysis with both Physic and Chem as your predictors. Discuss what you see/observe. Having done this, evaluate (and discuss) whether the incorporation of Sex into your model would be useful.:
open excel->enter values->goto data-->data analysis-->regression-->enter y and x range.
Taking physic and chem as predictors and maths as dependent variable:
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.375862725 | |||||||
| R Square | 0.141272788 | |||||||
| Adjusted R Square | 0.130333588 | |||||||
| Standard Error | 5.923466072 | |||||||
| Observations | 160 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 2 | 906.264052 | 453.132026 | 12.91436175 | 6.42148E-06 | |||
| Residual | 157 | 5508.729698 | 35.08745031 | |||||
| Total | 159 | 6414.99375 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 70.78329528 | 5.452669892 | 12.98140116 | 1.21582E-26 | 60.0132408 | 81.55335 | 60.0132408 | 81.55334976 |
| X Variable 1 | 0.335604992 | 0.074211273 | 4.522291285 | 1.19951E-05 | 0.18902369 | 0.482186 | 0.18902369 | 0.482186294 |
| X Variable 2 | -0.257668501 | 0.081075428 | -3.178133104 | 0.001785483 | -0.417807807 | -0.09753 | -0.417807807 | -0.097529195 |
here we have,
Intercept(p-value)=1.21582E-26<0.05
X Variable 1(p-value)=1.19951E-05<0.05
X Variable 2(p-value)=0.001785483<0.05
hence,since p-value<0.05 the model is significant.
Now adding column of sex female =1, male=0:
| math | Sex | SEX | PHY | CHEM |
| 83 | F | 1 | 53 | 60 |
| 66 | M | 0 | 58 | 61 |
| 78 | F | 1 | 49 | 62 |
| 71 | M | 0 | 66 | 60 |
| 77 | F | 1 | 43 | 46 |
| 71 | M | 0 | 49 | 50 |
| 80 | F | 1 | 54 | 59 |
| 70 | M | 0 | 60 | 58 |
| 82 | F | 1 | 54 | 56 |
| 70 | M | 0 | 52 | 57 |
| 80 | F | 1 | 48 | 52 |
| 70 | M | 0 | 53 | 47 |
| 80 | F | 1 | 48 | 47 |
| 68 | M | 0 | 50 | 58 |
| 82 | F | 1 | 62 | 60 |
| 71 | M | 0 | 55 | 51 |
| 76 | F | 1 | 55 | 66 |
| 78 | M | 0 | 65 | 46 |
| 82 | F | 1 | 55 | 54 |
| 67 | M | 0 | 47 | 52 |
| 78 | F | 1 | 48 | 52 |
| 64 | M | 0 | 57 | 60 |
| 79 | F | 1 | 52 | 56 |
| 73 | M | 0 | 52 | 51 |
| 82 | F | 1 | 50 | 57 |
| 69 | M | 0 | 65 | 64 |
| 77 | F | 1 | 49 | 55 |
| 73 | M | 0 | 52 | 51 |
| 81 | F | 1 | 58 | 60 |
| 70 | M | 0 | 53 | 53 |
| 76 | F | 1 | 56 | 56 |
| 70 | M | 0 | 49 | 51 |
| 92 | F | 1 | 68 | 60 |
| 73 | M | 0 | 58 | 52 |
| 82 | F | 1 | 56 | 59 |
| 79 | M | 0 | 63 | 41 |
| 83 | F | 1 | 48 | 50 |
| 74 | M | 0 | 58 | 46 |
| 74 | F | 1 | 52 | 48 |
| 64 | M | 0 | 54 | 51 |
| 78 | F | 1 | 57 | 52 |
| 69 | M | 0 | 51 | 54 |
| 82 | F | 1 | 55 | 50 |
| 68 | M | 0 | 64 | 64 |
| 77 | F | 1 | 52 | 58 |
| 72 | M | 0 | 56 | 53 |
| 85 | F | 1 | 54 | 47 |
| 59 | M | 0 | 46 | 62 |
| 84 | F | 1 | 67 | 46 |
| 81 | M | 0 | 63 | 49 |
| 81 | F | 1 | 51 | 58 |
| 67 | M | 0 | 51 | 59 |
| 79 | F | 1 | 63 | 52 |
| 67 | M | 0 | 51 | 53 |
| 76 | F | 1 | 49 | 54 |
| 65 | M | 0 | 48 | 55 |
| 78 | F | 1 | 59 | 53 |
| 71 | M | 0 | 55 | 55 |
| 80 | F | 1 | 47 | 47 |
| 75 | M | 0 | 64 | 59 |
| 84 | F | 1 | 59 | 48 |
| 74 | M | 0 | 52 | 49 |
| 75 | F | 1 | 52 | 50 |
| 62 | M | 0 | 56 | 71 |
| 81 | F | 1 | 57 | 51 |
| 64 | M | 0 | 43 | 54 |
| 77 | F | 1 | 51 | 55 |
| 68 | M | 0 | 45 | 50 |
| 80 | F | 1 | 47 | 58 |
| 64 | M | 0 | 44 | 55 |
| 70 | F | 1 | 41 | 57 |
| 73 | M | 0 | 64 | 61 |
| 83 | F | 1 | 65 | 55 |
| 71 | M | 0 | 53 | 51 |
| 82 | F | 1 | 48 | 58 |
| 71 | M | 0 | 59 | 59 |
| 70 | F | 1 | 58 | 59 |
| 74 | M | 0 | 52 | 48 |
| 79 | F | 1 | 54 | 59 |
| 75 | M | 0 | 61 | 58 |
| 74 | F | 1 | 54 | 69 |
| 73 | M | 0 | 54 | 50 |
| 81 | F | 1 | 57 | 56 |
| 70 | M | 0 | 48 | 47 |
| 79 | F | 1 | 46 | 56 |
| 74 | M | 0 | 54 | 44 |
| 87 | F | 1 | 72 | 56 |
| 74 | M | 0 | 44 | 47 |
| 78 | F | 1 | 49 | 48 |
| 72 | M | 0 | 60 | 61 |
| 71 | F | 1 | 49 | 60 |
| 71 | M | 0 | 49 | 51 |
| 90 | F | 1 | 64 | 54 |
| 74 | M | 0 | 54 | 43 |
| 81 | F | 1 | 56 | 58 |
| 73 | M | 0 | 54 | 51 |
| 81 | F | 1 | 52 | 58 |
| 73 | M | 0 | 54 | 47 |
| 79 | F | 1 | 58 | 59 |
| 62 | M | 0 | 36 | 56 |
| 77 | F | 1 | 54 | 55 |
| 78 | M | 0 | 65 | 47 |
| 79 | F | 1 | 57 | 69 |
| 71 | M | 0 | 52 | 57 |
| 79 | F | 1 | 58 | 49 |
| 77 | M | 0 | 59 | 59 |
| 71 | F | 1 | 47 | 56 |
| 66 | M | 0 | 52 | 61 |
| 88 | F | 1 | 59 | 59 |
| 62 | M | 0 | 55 | 66 |
| 85 | F | 1 | 58 | 59 |
| 76 | M | 0 | 62 | 49 |
| 84 | F | 1 | 67 | 56 |
| 69 | M | 0 | 52 | 59 |
| 81 | F | 1 | 52 | 50 |
| 71 | M | 0 | 60 | 51 |
| 78 | F | 1 | 54 | 65 |
| 73 | M | 0 | 60 | 59 |
| 79 | F | 1 | 52 | 66 |
| 74 | M | 0 | 64 | 53 |
| 78 | F | 1 | 60 | 56 |
| 72 | M | 0 | 52 | 43 |
| 78 | F | 1 | 57 | 60 |
| 70 | M | 0 | 56 | 59 |
| 86 | F | 1 | 57 | 61 |
| 68 | M | 0 | 45 | 54 |
| 81 | F | 1 | 57 | 53 |
| 66 | M | 0 | 53 | 59 |
| 80 | F | 1 | 60 | 52 |
| 69 | M | 0 | 55 | 52 |
| 86 | F | 1 | 61 | 49 |
| 73 | M | 0 | 70 | 64 |
| 82 | F | 1 | 52 | 50 |
| 73 | M | 0 | 59 | 54 |
| 79 | F | 1 | 57 | 64 |
| 65 | M | 0 | 57 | 63 |
| 78 | F | 1 | 44 | 48 |
| 69 | M | 0 | 56 | 58 |
| 74 | F | 1 | 54 | 54 |
| 64 | M | 0 | 41 | 58 |
| 76 | F | 1 | 56 | 55 |
| 66 | M | 0 | 62 | 59 |
| 77 | F | 1 | 51 | 65 |
| 66 | M | 0 | 60 | 70 |
| 78 | F | 1 | 60 | 59 |
| 75 | M | 0 | 59 | 53 |
| 78 | F | 1 | 51 | 58 |
| 67 | M | 0 | 58 | 67 |
| 82 | F | 1 | 51 | 49 |
| 68 | M | 0 | 55 | 52 |
| 76 | F | 1 | 45 | 54 |
| 67 | M | 0 | 61 | 62 |
| 80 | F | 1 | 67 | 64 |
| 72 | M | 0 | 64 | 57 |
| 84 | F | 1 | 53 | 48 |
| 71 | M | 0 | 58 | 61 |
| 75 | F | 1 | 58 | 59 |
| 69 | M | 0 | 63 | 59 |
| 86 | F | 1 | 68 | 65 |
| 76 | M | 0 | 71 | 55 |
open excel->enter values->goto data-->data analysis-->regression-->enter y and x range.
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.876527207 | |||||||
| R Square | 0.768299945 | |||||||
| Adjusted R Square | 0.763844175 | |||||||
| Standard Error | 3.086731742 | |||||||
| Observations | 160 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 3 | 4928.639346 | 1642.879782 | 172.4280866 | 2.56101E-49 | |||
| Residual | 156 | 1486.354404 | 9.527912848 | |||||
| Total | 159 | 6414.99375 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 66.60087055 | 2.848680815 | 23.37954825 | 7.56389E-53 | 60.97390693 | 72.22783418 | 60.97390693 | 72.22783418 |
| X Variable 1 | 10.08032652 | 0.490605253 | 20.54671544 | 3.12959E-46 | 9.111240097 | 11.04941295 | 9.111240097 | 11.04941295 |
| X Variable 2 | 0.393883631 | 0.038775543 | 10.15804285 | 6.34827E-19 | 0.317290785 | 0.470476478 | 0.317290785 | 0.470476478 |
| X Variable 3 | -0.331149071 | 0.042399683 | -7.810177915 | 7.82555E-13 | -0.414900636 | -0.247397506 | -0.414900636 | -0.247397506 |
Intercept(p-value)=7.56389E-53<0.05
X Variable 1(p-value)=3.12959E-46<0.05
X Variable 2(p-value)=6.34827E-19<0.05
X variable 3(p-value)=7.82555E-13<0.05
hence, the model is significant YES,the incorporation of Sex into your model would be useful.
please rate my answer and comment for doubts.