Question

In: Statistics and Probability

Student Sex math physic chem 401 F 83 53 60 402 M 66 58 61 403...

Student Sex math physic chem
401 F 83 53 60
402 M 66 58 61
403 F 78 49 62
404 M 71 66 60
405 F 77 43 46
406 M 71 49 50
407 F 80 54 59
408 M 70 60 58
409 F 82 54 56
410 M 70 52 57
411 F 80 48 52
412 M 70 53 47
413 F 80 48 47
414 M 68 50 58
415 F 82 62 60
416 M 71 55 51
417 F 76 55 66
418 M 78 65 46
419 F 82 55 54
420 M 67 47 52
421 F 78 48 52
422 M 64 57 60
423 F 79 52 56
424 M 73 52 51
425 F 82 50 57
426 M 69 65 64
427 F 77 49 55
428 M 73 52 51
429 F 81 58 60
430 M 70 53 53
431 F 76 56 56
432 M 70 49 51
433 F 92 68 60
434 M 73 58 52
435 F 82 56 59
436 M 79 63 41
437 F 83 48 50
438 M 74 58 46
439 F 74 52 48
440 M 64 54 51
441 F 78 57 52
442 M 69 51 54
443 F 82 55 50
444 M 68 64 64
445 F 77 52 58
446 M 72 56 53
447 F 85 54 47
448 M 59 46 62
449 F 84 67 46
450 M 81 63 49
451 F 81 51 58
452 M 67 51 59
453 F 79 63 52
454 M 67 51 53
455 F 76 49 54
456 M 65 48 55
457 F 78 59 53
458 M 71 55 55
459 F 80 47 47
460 M 75 64 59
461 F 84 59 48
462 M 74 52 49
463 F 75 52 50
464 M 62 56 71
465 F 81 57 51
466 M 64 43 54
467 F 77 51 55
468 M 68 45 50
469 F 80 47 58
470 M 64 44 55
471 F 70 41 57
472 M 73 64 61
473 F 83 65 55
474 M 71 53 51
475 F 82 48 58
476 M 71 59 59
477 F 70 58 59
478 M 74 52 48
479 F 79 54 59
480 M 75 61 58
481 F 74 54 69
482 M 73 54 50
483 F 81 57 56
484 M 70 48 47
485 F 79 46 56
486 M 74 54 44
487 F 87 72 56
488 M 74 44 47
489 F 78 49 48
490 M 72 60 61
491 F 71 49 60
492 M 71 49 51
493 F 90 64 54
494 M 74 54 43
495 F 81 56 58
496 M 73 54 51
497 F 81 52 58
498 M 73 54 47
499 F 79 58 59
500 M 62 36 56
501 F 77 54 55
502 M 78 65 47
503 F 79 57 69
504 M 71 52 57
505 F 79 58 49
506 M 77 59 59
507 F 71 47 56
508 M 66 52 61
509 F 88 59 59
510 M 62 55 66
511 F 85 58 59
512 M 76 62 49
513 F 84 67 56
514 M 69 52 59
515 F 81 52 50
516 M 71 60 51
517 F 78 54 65
518 M 73 60 59
519 F 79 52 66
520 M 74 64 53
521 F 78 60 56
522 M 72 52 43
523 F 78 57 60
524 M 70 56 59
525 F 86 57 61
526 M 68 45 54
527 F 81 57 53
528 M 66 53 59
529 F 80 60 52
530 M 69 55 52
531 F 86 61 49
532 M 73 70 64
533 F 82 52 50
534 M 73 59 54
535 F 79 57 64
536 M 65 57 63
537 F 78 44 48
538 M 69 56 58
539 F 74 54 54
540 M 64 41 58
541 F 76 56 55
542 M 66 62 59
543 F 77 51 65
544 M 66 60 70
545 F 78 60 59
546 M 75 59 53
547 F 78 51 58
548 M 67 58 67
549 F 82 51 49
550 M 68 55 52
551 F 76 45 54
552 M 67 61 62
553 F 80 67 64
554 M 72 64 57
555 F 84 53 48
556 M 71 58 61
557 F 75 58 59
558 M 69 63 59
559 F 86 68 65
560 M 76 71 55
561 F 85 57 50
562 M 76 62 54
563 F 79 49 56
564 M 72 49 46
565 F 79 59 51
566 M 67 51 54
567 F 80 56 58
568 M 59 57 73
569 F 80 57 66
570 M 68 58 56
571 F 81 56 66
572 M 67 55 59
573 F 82 59 56
574 M 72 58 55
575 F 81 54 45
576 M 60 55 64
577 F 85 65 52
578 M 72 50 52
579 F 79 51 57
580 M 73 58 57
581 F 81 56 57
582 M 79 58 42
583 F 78 47 62
584 M 73 65 53
585 F 87 55 50
586 M 69 52 53
587 F 85 42 55
588 M 69 59 61
589 F 82 56 58
590 M 74 54 45
591 F 80 41 51
592 M 74 53 56
593 F 71 51 58
594 M 61 53 61
595 F 81 63 59
596 M 73 53 52
597 F 79 48 54
598 M 74 70 61
599 F 82 48 45
600 M 65 45 56

use the first 160 of your observations for question A, B,C  and  use the last 40 for question D

a.What is a 90% confidence interval for the correlation between Math and Physic?

b. Conduct a simple regression analysis with Math as your dependent variable and Chem as your independent variable. Discuss what you see/observe.

c.Conduct a multiple regression analysis with both Physic and Chem as your predictors. Discuss what you see/observe. Having done this, evaluate (and discuss) whether the incorporation of Sex into your model would be useful.

Solutions

Expert Solution

As mentioned we have to take only 160 observations for question A,B,C:

a.What is a 90% confidence interval for the correlation between Math and Physic?

math physic
83 53
66 58
78 49
71 66
77 43
71 49
80 54
70 60
82 54
70 52
80 48
70 53
80 48
68 50
82 62
71 55
76 55
78 65
82 55
67 47
78 48
64 57
79 52
73 52
82 50
69 65
77 49
73 52
81 58
70 53
76 56
70 49
92 68
73 58
82 56
79 63
83 48
74 58
74 52
64 54
78 57
69 51
82 55
68 64
77 52
72 56
85 54
59 46
84 67
81 63
81 51
67 51
79 63
67 51
76 49
65 48
78 59
71 55
80 47
75 64
84 59
74 52
75 52
62 56
81 57
64 43
77 51
68 45
80 47
64 44
70 41
73 64
83 65
71 53
82 48
71 59
70 58
74 52
79 54
75 61
74 54
73 54
81 57
70 48
79 46
74 54
87 72
74 44
78 49
72 60
71 49
71 49
90 64
74 54
81 56
73 54
81 52
73 54
79 58
62 36
77 54
78 65
79 57
71 52
79 58
77 59
71 47
66 52
88 59
62 55
85 58
76 62
84 67
69 52
81 52
71 60
78 54
73 60
79 52
74 64
78 60
72 52
78 57
70 56
86 57
68 45
81 57
66 53
80 60
69 55
86 61
73 70
82 52
73 59
79 57
65 57
78 44
69 56
74 54
64 41
76 56
66 62
77 51
66 60
78 60
75 59
78 51
67 58
82 51
68 55
76 45
67 61
80 67
72 64
84 53
71 58
75 58
69 63
86 68
76 71

hence, correlation between math and physic is calculated in excel using CORREL(array1,array2):

=CORREL(C2:C161,D2:D161)=

0.293303

Z=

Z=

Z=0.302

Zc=1.645

SE=

SE=

SE=0.0798

CI=(Z-Zc*SE,Z+Zc*SE)

CI=(0.302-1.645*0.0798, 0.302+1.645*0.0798)

CI=[0.1693, 0.4082]

b. Conduct a simple regression analysis with Math as your dependent variable and Chem as your independent variable. Discuss what you see/observe:

We have:

CHEM MATHS CHEM*MATHS CHEM2 MATHS2
60 83 4980 3600 6889
61 66 4026 3721 4356
62 78 4836 3844 6084
60 71 4260 3600 5041
46 77 3542 2116 5929
50 71 3550 2500 5041
59 80 4720 3481 6400
58 70 4060 3364 4900
56 82 4592 3136 6724
57 70 3990 3249 4900
52 80 4160 2704 6400
47 70 3290 2209 4900
47 80 3760 2209 6400
58 68 3944 3364 4624
60 82 4920 3600 6724
51 71 3621 2601 5041
66 76 5016 4356 5776
46 78 3588 2116 6084
54 82 4428 2916 6724
52 67 3484 2704 4489
52 78 4056 2704 6084
60 64 3840 3600 4096
56 79 4424 3136 6241
51 73 3723 2601 5329
57 82 4674 3249 6724
64 69 4416 4096 4761
55 77 4235 3025 5929
51 73 3723 2601 5329
60 81 4860 3600 6561
53 70 3710 2809 4900
56 76 4256 3136 5776
51 70 3570 2601 4900
60 92 5520 3600 8464
52 73 3796 2704 5329
59 82 4838 3481 6724
41 79 3239 1681 6241
50 83 4150 2500 6889
46 74 3404 2116 5476
48 74 3552 2304 5476
51 64 3264 2601 4096
52 78 4056 2704 6084
54 69 3726 2916 4761
50 82 4100 2500 6724
64 68 4352 4096 4624
58 77 4466 3364 5929
53 72 3816 2809 5184
47 85 3995 2209 7225
62 59 3658 3844 3481
46 84 3864 2116 7056
49 81 3969 2401 6561
58 81 4698 3364 6561
59 67 3953 3481 4489
52 79 4108 2704 6241
53 67 3551 2809 4489
54 76 4104 2916 5776
55 65 3575 3025 4225
53 78 4134 2809 6084
55 71 3905 3025 5041
47 80 3760 2209 6400
59 75 4425 3481 5625
48 84 4032 2304 7056
49 74 3626 2401 5476
50 75 3750 2500 5625
71 62 4402 5041 3844
51 81 4131 2601 6561
54 64 3456 2916 4096
55 77 4235 3025 5929
50 68 3400 2500 4624
58 80 4640 3364 6400
55 64 3520 3025 4096
57 70 3990 3249 4900
61 73 4453 3721 5329
55 83 4565 3025 6889
51 71 3621 2601 5041
58 82 4756 3364 6724
59 71 4189 3481 5041
59 70 4130 3481 4900
48 74 3552 2304 5476
59 79 4661 3481 6241
58 75 4350 3364 5625
69 74 5106 4761 5476
50 73 3650 2500 5329
56 81 4536 3136 6561
47 70 3290 2209 4900
56 79 4424 3136 6241
44 74 3256 1936 5476
56 87 4872 3136 7569
47 74 3478 2209 5476
48 78 3744 2304 6084
61 72 4392 3721 5184
60 71 4260 3600 5041
51 71 3621 2601 5041
54 90 4860 2916 8100
43 74 3182 1849 5476
58 81 4698 3364 6561
51 73 3723 2601 5329
58 81 4698 3364 6561
47 73 3431 2209 5329
59 79 4661 3481 6241
56 62 3472 3136 3844
Sum = 5432 7503 407045 298234 567003

Based on the above table, the following is calculated:

Therefore, based on the above calculations, the regression coefficients (the slope m, and the y-intercept n) are obtained as follows:

Therefore, we find that the regression equation is:

MATHS = 83.9119 - 0.1635 CHEM

We observe that for every 1 mark increase in chemistry there is a deduction of 0.1635 marks in mathematics.

c.Conduct a multiple regression analysis with both Physic and Chem as your predictors. Discuss what you see/observe. Having done this, evaluate (and discuss) whether the incorporation of Sex into your model would be useful.:

open excel->enter values->goto data-->data analysis-->regression-->enter y and x range.

Taking physic and chem as predictors and maths as dependent variable:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.375862725
R Square 0.141272788
Adjusted R Square 0.130333588
Standard Error 5.923466072
Observations 160
ANOVA
df SS MS F Significance F
Regression 2 906.264052 453.132026 12.91436175 6.42148E-06
Residual 157 5508.729698 35.08745031
Total 159 6414.99375
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 70.78329528 5.452669892 12.98140116 1.21582E-26 60.0132408 81.55335 60.0132408 81.55334976
X Variable 1 0.335604992 0.074211273 4.522291285 1.19951E-05 0.18902369 0.482186 0.18902369 0.482186294
X Variable 2 -0.257668501 0.081075428 -3.178133104 0.001785483 -0.417807807 -0.09753 -0.417807807 -0.097529195

here we have,

Intercept(p-value)=1.21582E-26<0.05

X Variable 1(p-value)=1.19951E-05<0.05

X Variable 2(p-value)=0.001785483<0.05

hence,since p-value<0.05 the model is significant.

Now adding column of sex female =1, male=0:

math Sex SEX PHY CHEM
83 F 1 53 60
66 M 0 58 61
78 F 1 49 62
71 M 0 66 60
77 F 1 43 46
71 M 0 49 50
80 F 1 54 59
70 M 0 60 58
82 F 1 54 56
70 M 0 52 57
80 F 1 48 52
70 M 0 53 47
80 F 1 48 47
68 M 0 50 58
82 F 1 62 60
71 M 0 55 51
76 F 1 55 66
78 M 0 65 46
82 F 1 55 54
67 M 0 47 52
78 F 1 48 52
64 M 0 57 60
79 F 1 52 56
73 M 0 52 51
82 F 1 50 57
69 M 0 65 64
77 F 1 49 55
73 M 0 52 51
81 F 1 58 60
70 M 0 53 53
76 F 1 56 56
70 M 0 49 51
92 F 1 68 60
73 M 0 58 52
82 F 1 56 59
79 M 0 63 41
83 F 1 48 50
74 M 0 58 46
74 F 1 52 48
64 M 0 54 51
78 F 1 57 52
69 M 0 51 54
82 F 1 55 50
68 M 0 64 64
77 F 1 52 58
72 M 0 56 53
85 F 1 54 47
59 M 0 46 62
84 F 1 67 46
81 M 0 63 49
81 F 1 51 58
67 M 0 51 59
79 F 1 63 52
67 M 0 51 53
76 F 1 49 54
65 M 0 48 55
78 F 1 59 53
71 M 0 55 55
80 F 1 47 47
75 M 0 64 59
84 F 1 59 48
74 M 0 52 49
75 F 1 52 50
62 M 0 56 71
81 F 1 57 51
64 M 0 43 54
77 F 1 51 55
68 M 0 45 50
80 F 1 47 58
64 M 0 44 55
70 F 1 41 57
73 M 0 64 61
83 F 1 65 55
71 M 0 53 51
82 F 1 48 58
71 M 0 59 59
70 F 1 58 59
74 M 0 52 48
79 F 1 54 59
75 M 0 61 58
74 F 1 54 69
73 M 0 54 50
81 F 1 57 56
70 M 0 48 47
79 F 1 46 56
74 M 0 54 44
87 F 1 72 56
74 M 0 44 47
78 F 1 49 48
72 M 0 60 61
71 F 1 49 60
71 M 0 49 51
90 F 1 64 54
74 M 0 54 43
81 F 1 56 58
73 M 0 54 51
81 F 1 52 58
73 M 0 54 47
79 F 1 58 59
62 M 0 36 56
77 F 1 54 55
78 M 0 65 47
79 F 1 57 69
71 M 0 52 57
79 F 1 58 49
77 M 0 59 59
71 F 1 47 56
66 M 0 52 61
88 F 1 59 59
62 M 0 55 66
85 F 1 58 59
76 M 0 62 49
84 F 1 67 56
69 M 0 52 59
81 F 1 52 50
71 M 0 60 51
78 F 1 54 65
73 M 0 60 59
79 F 1 52 66
74 M 0 64 53
78 F 1 60 56
72 M 0 52 43
78 F 1 57 60
70 M 0 56 59
86 F 1 57 61
68 M 0 45 54
81 F 1 57 53
66 M 0 53 59
80 F 1 60 52
69 M 0 55 52
86 F 1 61 49
73 M 0 70 64
82 F 1 52 50
73 M 0 59 54
79 F 1 57 64
65 M 0 57 63
78 F 1 44 48
69 M 0 56 58
74 F 1 54 54
64 M 0 41 58
76 F 1 56 55
66 M 0 62 59
77 F 1 51 65
66 M 0 60 70
78 F 1 60 59
75 M 0 59 53
78 F 1 51 58
67 M 0 58 67
82 F 1 51 49
68 M 0 55 52
76 F 1 45 54
67 M 0 61 62
80 F 1 67 64
72 M 0 64 57
84 F 1 53 48
71 M 0 58 61
75 F 1 58 59
69 M 0 63 59
86 F 1 68 65
76 M 0 71 55

open excel->enter values->goto data-->data analysis-->regression-->enter y and x range.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.876527207
R Square 0.768299945
Adjusted R Square 0.763844175
Standard Error 3.086731742
Observations 160
ANOVA
df SS MS F Significance F
Regression 3 4928.639346 1642.879782 172.4280866 2.56101E-49
Residual 156 1486.354404 9.527912848
Total 159 6414.99375
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 66.60087055 2.848680815 23.37954825 7.56389E-53 60.97390693 72.22783418 60.97390693 72.22783418
X Variable 1 10.08032652 0.490605253 20.54671544 3.12959E-46 9.111240097 11.04941295 9.111240097 11.04941295
X Variable 2 0.393883631 0.038775543 10.15804285 6.34827E-19 0.317290785 0.470476478 0.317290785 0.470476478
X Variable 3 -0.331149071 0.042399683 -7.810177915 7.82555E-13 -0.414900636 -0.247397506 -0.414900636 -0.247397506

Intercept(p-value)=7.56389E-53<0.05

X Variable 1(p-value)=3.12959E-46<0.05

X Variable 2(p-value)=6.34827E-19<0.05

X variable 3(p-value)=7.82555E-13<0.05

hence, the model is significant YES,the incorporation of Sex into your model would be useful.

please rate my answer and comment for doubts.


Related Solutions

Student Sex math physic chem 401 F 83 53 60 402 M 66 58 61 403...
Student Sex math physic chem 401 F 83 53 60 402 M 66 58 61 403 F 78 49 62 404 M 71 66 60 405 F 77 43 46 406 M 71 49 50 407 F 80 54 59 408 M 70 60 58 409 F 82 54 56 410 M 70 52 57 411 F 80 48 52 412 M 70 53 47 413 F 80 48 47 414 M 68 50 58 415 F 82 62 60...
Population 1   Population 2 51   54 57   51 65   67 68   60 53   58 58   61...
Population 1   Population 2 51   54 57   51 65   67 68   60 53   58 58   61 75   66 72   79 Can it be concluded, from this data, that there is a significant difference between the two population means? Let d=(Population 1 entry)−(Population 2 entry). Use a significance level of α=0.1 for the test. Assume that both populations are normally distributed. Step 1 of 5: State the null and alternative hypotheses for the test. Step 2 of 5: Find the value...
Consider the data set below. 65 68 58 57 71 61 60 67 66 72 60...
Consider the data set below. 65 68 58 57 71 61 60 67 66 72 60 62 54 57 61 54 55 58 61 55 64 66 56 61 51 83 57 55 58 59 61 55 66 55 58 52 75 67 64 56 55 58 50 62 63 67 57 54 55 63 a.       Find the mean, median and mode. b.       Find the range, variance, and standard deviation. c.              Find the lower quartile, upper quartile, and inter-quartile range...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT