Question

In: Physics

Force F1=950 N has an angle of 30° with positive x-axis and Force F2=550 N has...

Force F1=950 N has an angle of 30° with positive x-axis and Force F2=550 N has an angle of -65° with positive x-axis. Find the values for F1x, F1y, F2x, F2y, Sum of Fx, Sum of Fy, and FR.

Solutions

Expert Solution


Related Solutions

Vector  has a magnitude of 7.00 units and makes an angle of 39.5° with the positive x-axis....
Vector  has a magnitude of 7.00 units and makes an angle of 39.5° with the positive x-axis. Vector  also has a magnitude of 8.00 units and is directed along the negative x-axis. Using graphical methods find the following. (a) The vector sum  + . Magnitude of A + B: units Direction of A + B: ° counterclockwise from +x-axis (b) The vector difference  - . Magnitude of A - B: units Direction of A - B: ° counterclockwise from +x-axis
The magnitudes of F1, F2 and F3 are 300, 190 and 250 N, respectively. F1 is...
The magnitudes of F1, F2 and F3 are 300, 190 and 250 N, respectively. F1 is directed on the slope m = 0.6 m/m. F2 is directed alpha = 0.17 radians from F1. F3 is directed beta =123 degrees from F2. Determine the direction of the Resultant in degrees measured counter-clockwise from the + x-axis.
Given the vector F1 = 100 N, Ѳ1 = 20o , and F2 = 200 N,...
Given the vector F1 = 100 N, Ѳ1 = 20o , and F2 = 200 N, Ѳ2 = 90o   and F3= 300 N, Ѳ3 =220o . Find the magnitude and direction of the resultant F= F1 + F2 + F3 using the following method: Analytical: Use the component method. (6pts.) Graphical: Use the polygon method. (6pts.) Use a percent error calculation to determine how close the graphical result are to the analytical method.
The Fibonacci numbers are recursively dened by F1 = 1; F2 = 1 and for n...
The Fibonacci numbers are recursively dened by F1 = 1; F2 = 1 and for n > 1; F_(n+1) = F_n + F_(n-1): So the rst few Fibonacci Numbers are: 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; : : : There are numerous properties of the Fibonacci numbers. a) Use the principle of Strong Induction to show that all integers n > 1 and m > 0 F_(n-1)F_(m )+ F_(n)F_(m+1) = F_(n+m): Solution. (Hint: Use...
Specify the coordinate direction angles of F1 and F2 and express each force as a Cartesian vector.
Specify the coordinate direction angles of F1 and F2 and express each force as a Cartesian vector. State the magnitude and coordinate direction angles of the resultant vector. 
A force F1with magnitude 10 acts in the direction of θ1= 30◦ and another force F2...
A force F1with magnitude 10 acts in the direction of θ1= 30◦ and another force F2 with magnitude 14 acts in a direction of θ2= 280◦. Find the magnitude and the direction of the resultant force F1+F2.
Forces F1 and F2 act on the bracket as shown. Determine the projection Fb of their resultant R onto the b-axis.
Forces F1 and F2 act on the bracket as shown. Determine the projection Fb of their resultant R onto the b-axis. 
Consider two vectors F1 with magnitude 44 N inclined at 61 o and F2 with magnitude...
Consider two vectors F1 with magnitude 44 N inclined at 61 o and F2 with magnitude 98 N inclined at 139 o , measured from the positive x axis with counterclockwise positive. Find the direction of this resultant vector (between the limits of 0 and −180◦ from the positive x-axis). Answer in units of o . Your answer must be within ± 5.0%
Vector A has a magnitude of 4 m/s and it is on the positive x axis...
Vector A has a magnitude of 4 m/s and it is on the positive x axis . Vector B has a magnitude of 6 m/s and forms a 30 degrees angle with the positive x axis. Vector C has a magnitude of 8 m/s and forms a 60 degree angle with the negative x axis. Find: a) The magnitude of A + B + C = D Give your answer with two significant figures. b) The angle vector D form...
Let the angle θθ be the angle that the vector A⃗A→makes with the +x-axis, measured counterclockwise...
Let the angle θθ be the angle that the vector A⃗A→makes with the +x-axis, measured counterclockwise from that axis. Find the angle θθfor a vector that has the following components. PART 1: Ax= 3.00 mm , Ay= -0.500 mm Express your answer in degrees. PART 2: Ax= 1.80 mm , Ay= 3.30 mm Express your answer in degrees. PART 3: Ax= -3.00 mm , Ay= 3.20 mm Express your answer in degrees. PART 4: Ax= -1.20 mm , Ay= -3.40...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT