Question

In: Physics

0.7 kg of ice at 0 ◦C and 3 kg of water at Ti are brought...

0.7 kg of ice at 0 ◦C and 3 kg of water at Ti are brought into thermal contact in an iso- lated container. All the ice melts, and the mixture reaches an equilibrium temperature of 10 ◦C.

(a) (5 points) Determine the initial temperature Ti of the liquid water.

(b) (1 point) Determine the entropy change ∆S_melt associated with this amount of ice melting.

(c) (3 points) Determine the entropy change ∆S_coolwater associated with the decreasing temperature of the water. (Hint: find an expression for dQ in terms of dT.)

(d) (2 points) Determine the entropy change ∆S_warmwater associated with the increasing temperature of the melted ice.

(e) (2 points) Determine the net entropy change associated with this thermal process. Explain whether your result obeys the Second Law of Thermodynamics.

Solutions

Expert Solution


Related Solutions

A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that...
A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that was originally 84.1∘C. What is the final temperature of the water after the ice melts and the water comes to thermal equilibrium? This problem requires a lot of algebra. You will make fewer errors if you solve for the answer using symbols and then plug in the numbers. The specific heat of water and the latent heat of fusion for water are given in...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0 C. Energy is added until the ice has just melted. The temperature at the boundary where heat transfer occurs is taken to be the system temperature during the process. The enthalpy of melting ice is 333.5 kJ/kg. Consider the following processes used to melt the ice. a.) Heat is added to from the environment at 20 C. Determine the entropy flux and the total...
A cooler contains 1 kg of ice at -5°C. 2 kg of water at 50°C is...
A cooler contains 1 kg of ice at -5°C. 2 kg of water at 50°C is added to the cooler. If the cooler does not exchange any heat with the rest of the world, what is the final temperature of the ice and water?
A piece of ice at 0 0C is put in 2.00 Kg of water at 20...
A piece of ice at 0 0C is put in 2.00 Kg of water at 20 0C. The equilibrium temperature of the system becomes 5 0C. (Lf=333 kJ/Kg, cw=4186 J/Kg, TK=TC+273.15) a) Find the mass of ice? Kg b) Find the entropy change of ice? J/K c) Find the entropy change of water? J/K d) Find the total entropy change of sysem? J/K
It is well known that water freezes at 0°C at atmospheric pressure. The mixture of liquid water and ice at 0°C is said to be
It is well known that water freezes at 0°C at atmospheric pressure. The mixture of liquid water and ice at 0°C is said to be at stable equilibrium since it cannot undergo any changes when it is isolated from its surroundings. However, when water is free of impurities and the inner surfaces of the container are smooth, the temperature of water can be lowered to 22°C or even lower without any formation of ice at atmospheric pressure. But at that...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part A - Final Temperature What is the final temperature of the system? (If I've set the problem up right, you should be given numbers such that all of the ice has melted.)   Tf   =    ∘C    Part B - Entropy of Warming Ice What is the change in entropy of the ice, as it warms up before melting? S = J/K Part C - Entropy...
Table 1. Steel Bolt Specific Heat Data Bolt Ti (°C) Water Ti (°C) Water and Bolt...
Table 1. Steel Bolt Specific Heat Data Bolt Ti (°C) Water Ti (°C) Water and Bolt Tf (°C) Water ΔT = Tf - Ti Bolt ΔT (°C) Bolt Mass (kg) Water Mass (kg) Steel Bolt 72 20 26 52 -72 .021 .15 The heat lost by the hot bolt is equal to the heat gained by the water in the calorimeter. Use the equations provided above and what you know about heat to solve for the specific heat (C) of...
What mass of steam at 100∘C must be added to 1.80 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.80 kg of ice at 0∘C to yield liquid water at 20 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C...
What mass of steam at 100∘C must be added to 1.90 kg of ice at 0∘C to yield liquid water at 15 ∘C? The heat of fusion for water is 333 kJ/kg , the specific heat is 4186 J/kg⋅C∘ , the heat of vaporization is 2260 kJ/kg .
If you pour 0.0350 kg of 25.0°C water onto a 1.18 kg block of ice (which...
If you pour 0.0350 kg of 25.0°C water onto a 1.18 kg block of ice (which is initially at −15.0°C), what is the final temperature (in °C)? You may assume that the water cools so rapidly that effects of the surroundings are negligible.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT