Question

In: Statistics and Probability

The weekly time spent​ (in hours) on homework for 18 randomly selected high school students is...

The weekly time spent​ (in hours) on homework for 18 randomly selected high school students is given below. Use technology to construct​ 90%, 95%, and​ 99% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. Assume the weekly time spent on homework is normally distributed. 13.113.1 12.112.1 14.714.7 15.215.2 8.68.6 10.710.7 11.811.8 8.58.5 9.99.9 9.69.6 11.111.1 11.911.9 15.915.9 11.911.9 12.212.2 11.511.5 13.513.5 12.212.2 The lower limit of the​ 90% confidence interval is 11.0611.06​, and the upper limit is 12.7612.76. ​(Round to two decimal places as​ needed.) The lower limit of the​ 95% confidence interval is 10.8810.88​, and the upper limit is 12.9412.94. ​(Round to two decimal places as​ needed.) The lower limit of the​ 99% confidence interval is 10.5010.50​, and the upper limit is 13.3313.33. ​(Round to two decimal places as​ needed.) Interpret the​ 90% confidence interval. With nothing​% ​confidence, one can say that the ▼ population sample mean time spent on homework is between nothing and nothing hours. ​(Round to two decimal places as​ needed.)

Solutions

Expert Solution

Solution:

Assume the weekly time spent on homework is normally distributed. 13.113.1 12.112.1 14.714.7 15.215.2 8.68.6 10.710.7 11.811.8 8.58.5 9.99.9 9.69.6 11.111.1 11.911.9 15.915.9 11.911.9 12.212.2 11.511.5 13.513.5 12.212.2 The lower limit of the​ 90% confidence interval is 11.06​, and the upper limit is 12.76. ​(Round to two decimal places as​ needed.) The lower limit of the​ 95% confidence interval is 10.88​, and the upper limit is 12.94. ​(Round to two decimal places as​ needed.) The lower limit of the​ 99% confidence interval is 10.50​, and the upper limit is 13.33. ​(Round to two decimal places as​ needed.)

We have to Interpret the​ 90% confidence interval.

With 90​% ​confidence, one can say that the population sample mean time spent on homework is between 11.06 and 12.76 hours.

The interpretation for 95% will be the following:

With 95% confidence, one can say that the population sample mean time spent on homework is between 10.88 and 12.94 hours.

The interpretation for 99% will be the following:

With 99% confidence, one can say that the population sample mean time spent on homework is between 10.50 and 13.33 hours.


Related Solutions

The table below gives the number of hours ten randomly selected students spent studying and their...
The table below gives the number of hours ten randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours seven randomly selected students spent studying and their...
The table below gives the number of hours seven randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding course  grades. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^=b0+b1x, for predicting the course grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding grades. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^, for predicting the grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction...
The table below gives the number of hours five randomly selected students spent studying and their...
The table below gives the number of hours five randomly selected students spent studying and their corresponding grades. Using this data, consider the equation of the regression line, yˆ=b0+b1xy^, for predicting the grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT