Question

In: Statistics and Probability

A coin is tossed repeatedly until heads has occurred twice or tails has occurred twice, whichever...

A coin is tossed repeatedly until heads has occurred twice or tails has occurred twice, whichever comes first. Let X be the number of times the coin is tossed. Find:

a. E(X). b. Var(X).

Solutions

Expert Solution


Related Solutions

A fair coin is tossed repeatedly until it has landed Heads at least once and has...
A fair coin is tossed repeatedly until it has landed Heads at least once and has landed Tails at least once. Find the expected number of tosses.
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define...
A coin with P[Heads]= p and P[Tails]= 1p is tossed repeatedly (the tosses are independent). Define (X = number of the toss on which the first H appears, Y = number of the toss on which the second H appears. Clearly 1X<Y. (i) Are X and Y independent? Why or why not? (ii) What is the probability distribution of X? (iii) Find the probability distribution of Y . (iv) Let Z = Y X. Find the joint probability mass function
A coin is flipped repeatedly until either two heads appear in a row or two tails...
A coin is flipped repeatedly until either two heads appear in a row or two tails appear in a row(and then stop). Find the exact answer for P(two heads in a row appears before two tails in a row) for a coin with probability p of getting heads.
A coin has a probability of 1/4 for head, and is repeatedly tossed until we throw...
A coin has a probability of 1/4 for head, and is repeatedly tossed until we throw head. The successive results of the toss are independent of each other. What is the probability that the first time we throw head after an odd number of toss? Hint: Use the law of total probability and consider the event that the first toss is head is, and her complement, as conditioning events. Correct answer: 3/7
A coin is tossed twice. Let Z denote the number of heads on the first toss...
A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z.
A coin is tossed twice. Let Z denote the number of heads on the first toss...
A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find the correlation between W and Z
Suppose that we flip a fair coin until either it comes up tails twice or we...
Suppose that we flip a fair coin until either it comes up tails twice or we have flipped it six times. What is the expected number of times we flip the coin?
2. In 200 tosses of a coin, it was observed that 115 Heads and 85 Tails...
2. In 200 tosses of a coin, it was observed that 115 Heads and 85 Tails appeared. Test whether this is a fair coin at the = 0.05 level and at the = 0.01 levels.
STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the...
STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion. #2. A coin is tossed 10,000 times, it lands heads 5160 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion.
a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT