In: Finance
Consider the following two scenarios for the economy and the expected returns in each scenario for the market portfolio, an aggressive stock A, and a defensive stock D.
Rate of Return | |||||||||||||
Scenario | Market | Aggressive Stock A |
Defensive Stock D |
||||||||||
Bust | –8 | % | –10 | % | –5 | % | |||||||
Boom | 30 | 40 | 22 | ||||||||||
Required:
a. Find the beta of each stock.
b. If each scenario is equally likely, find the
expected rate of return on the market portfolio and on each
stock.
c. If the T-bill rate is 3%, what does the CAPM
say about the fair expected rate of return on the two stocks?
d. Which stock seems to be a better buy on the
basis of your answers to (a) through (c)?
Answer a) | ||||||||||||||||||
Given data in question, | ||||||||||||||||||
Rate of Return in % | ||||||||||||||||||
Scenario | Market | Aggressive Stock A | Defensive Stock D | |||||||||||||||
Bust | -8 | -10 | -5 | |||||||||||||||
Boom | 30 | 40 | 22 | |||||||||||||||
Beta of Agg. Stock A and Defensive Stock D can be found out by the formula, | ||||||||||||||||||
Beta Of a Stock = (Absolute Change in the Returns of a stock) / (Absolute Change in the Returns of the Market) |
||||||||||||||||||
Absolute change in Market's Return = 30 - (-8) = 38% | ||||||||||||||||||
Absolute change in A's Return = 40 - (10) = 50% | ||||||||||||||||||
Absolute change in D's Return = 22 - (-5) = 27% | ||||||||||||||||||
Therefore, | ||||||||||||||||||
Beta of A= (50/38) = 1.315789 |
|
|||||||||||||||||
Beta of D = 17/38 = 0.71052 | ||||||||||||||||||
Answer B) | ||||||||||||||||||
We can calculate the expected returns using the following formula: | ||||||||||||||||||
???????? ??????=??????????? ?? ???????? ? ∗??????? ?? ???????? ?+??????????? ?? ???????? ? ∗??????? ?? ???????? ?) |
||||||||||||||||||
Therefore, if both scenarios are equally likely, i.e. a probability of 0.5 for each event, | ||||||||||||||||||
E(R) of market = (0.5* -8%) + (0.5 * 30%) = 11% | ||||||||||||||||||
E(R) of Stock A = (0.5* -10%) + (0.5 * 40%) = 15% | ||||||||||||||||||
E(R) of Stock D = (0.5* -5%) + (0.5 * 22%) = 8.5% | ||||||||||||||||||
Answer C) | ||||||||||||||||||
According to the CAPM, if we calculate the expected returns on the individual stocks taking into consideration the risk free treasury rate and the Beta's of | ||||||||||||||||||
the individual stocks, the formula to calculate the same is, | ||||||||||||||||||
Fair Expected (Return of a Stock) = Risk Free Rate + Beta ( Expected return of the Market - Risk Free Rate ) | ||||||||||||||||||
(Exp. Return of Market taken as solved in the previosu question) | ||||||||||||||||||
Therefore, using the CAPM, the Exp. Returns for Stock A and D are, | ||||||||||||||||||
Stock A Fair Return = 3 + 1.315789 (11 - 3) = 13.52 % | ||||||||||||||||||
Stock D FairReturn = 3 + 0.71052 (11 - 3) = 8.68 % | ||||||||||||||||||
Hence, according to the returns calculated by the CAPM, the fair returns for A is 13.52 while we are expecting to generate 15%, | ||||||||||||||||||
which means the stock is currently undervalued and we should buy and go long on the same, | ||||||||||||||||||
whereas for Stock B the fair return is 8.68 while we expect to generate only 8.5%, which means that the stock is overvalued and we should sell or go short on the same. | ||||||||||||||||||
Answer D) | ||||||||||||||||||
Stock A seems to be a better buy on the basis of my answers from (a) to (c), as it is expected to generate a rate of return greater than the fair value for the same risk exposure, | ||||||||||||||||||
whilst Stock D seems to be overvalued as it has a lower expected rate of return for the risk undertaken and is priced higher than its fair value. |