Question

In: Physics

In the figure, a uniform, upward-pointing electric field E of magnitude 4.50

In the figure, a uniform, upward-pointing electric field E of magnitude 4.50

Solutions

Expert Solution

To determine whether or not the electron strikes one of the plates, we need to determine the time Ty required to travel a vertical distance of y = 0.02 m and the time Tx for a horizontal distance of x = 0.04 m.

If Ty < Tx, then the electron will strike the negative plate.
If Ty > Tx, the electron will not strike the plate and we will then determine the vertical distance at which the particle leaves the space between the plates.

For the most part, this is a kinematics problem, but we need to evaluate the vertical acceleration induced on the electron as it travels through the plates.

This acceleration is found by equating F = qE = ma --> a = qE/m = (1.6e-19)(4.5e3)/(9.11e-31) = 7.907e14 m/s^2.

We also need to isolate the x and y components of the velocity v0.

Vy = v0sin(45) = 6.31e6 m/s
Vx = Vy = 6.31e6 m/s

Now we find Ty and Tx.

0.02 = 0+(6.31e6)(Ty)+(0.5)(7.907e14)(Ty)^2 --> Ty = 2.709e-9 s
0.04 = 0+(6.31e6)(Tx) --> Tx = 6.339e-9 s

Since Ty < Tx, the electron will in fact strike the plate at a horizontal distance of x = 0+(6.339e6)(2.709e-9) = 0.01717 m.


Related Solutions

A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in the negative z-direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 3.75 cm from its initial position. ____________J (c) Determine the change in electric potential energy of the charged particle. ___________J (d) Determine the speed of the charged particle. _______m/s
A uniform electric field pointing in the positive y-direction with E = 100 N/C, fills the...
A uniform electric field pointing in the positive y-direction with E = 100 N/C, fills the region between two parallel plates.  The horizontal length of the plates is 60 cm. A charged particle with charge Q = - 3.2  x 10-19 C and mass 1.8  x 10-30  Kg, enters the region of constant electric field from the left with an initial velocity v = 9 x106 m/s in the positive x-direction. What is the magnitude of the velocity of the charged particle when it...
What is the magnitude of the electric field at the dot in the figure?
Part AWhat is the magnitude of the electric field at the dot in the figure?Express your answer using two significant figures.E = _________V/mPart B What is the direction of the electric field at the dot in the figure? Choose best answer.(a) the negative x-axis.(b) the positive x-axis.(c) 45 below -x-axis(d) 45 below +x-axis
What is the magnitude of the electric field at the dot in the figure? (Figure 1)
Part A What is the magnitude of the electric field at the dot in the figure? (Figure 1) Express your answer using two significant figures. E = _________V/m   Part B  What is the direction of the electric field at the dot in the figure? Choose the best answer. (a) the negative x-axis. (b) the positive x-axis. (c) 45 below -x-axis (d) 45 below +x-axis
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton...
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton moves from the origin to the point (x, y)=(20.0cm, 50.0cm). a) Through what potential difference does the charge move? b) What is the change in the potential energy of the charge field system? c) An electron is released at rest at the origin and it moves in the +x direction. What would be its speed, Vf, after the electron is released from rest and...
The figure below displays a circular loop of nickel wire in a uniform magnetic field pointing...
The figure below displays a circular loop of nickel wire in a uniform magnetic field pointing into the page. The radius of the loop is 10.0 cm and the magnitude of the field is 0.160 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.210 s to do so. What is the magnitude of the average induced emf in the loop (in mV)...
Determine the magnitude and direction of the electric field at point 1 in the figure(Figure 1).
Figure 1 Part A Determine the magnitude and direction of the electric field at point 1 in the figure(Figure 1). E1→=(2500V/m,up) E1→=(7500V/m,up) E1→=(3750V/m,down) E1→=(2500V/m,down) Part B Determine the magnitude and direction of the electric field at point 2 in the figure. E2→=(2500V/m,up) E2→=(3750V/m,down) E2→=(7500V/m,down) E2→=(5000V/m,up)
A uniform magnetic field points upward, parallel to the page, and has a magnitude of 7.85...
A uniform magnetic field points upward, parallel to the page, and has a magnitude of 7.85 mT. A negatively charged particle (q = -3.32 µC, m = 2.05 pg) moves through this field with a speed of 67.3 km/s at a 42° with respect to the magnetic field, parallel to the page as shown. What is the magnitude of the magnetic force on this particle? 1.75 mN 1.30 mN 1.61 mN 1.17 mN
A uniform electric field of magnitude 40 N/C is directed downward.
A uniform electric field of magnitude 40 N/C is directed downward. What are the magnitude and the direction of the force on a + 4C charge placed in this electric field? 160 N directed upward 160 N directed downward 10 N directed downward 0.1 N directed downward
A proton is released from rest inside a region of constant, uniform electric field ?1 pointing...
A proton is released from rest inside a region of constant, uniform electric field ?1 pointing due north. 34.8 s after it is released, the electric field instantaneously changes to a constant, uniform electric field ?2 pointing due south. 8.49 s after the field changes, the proton has returned to its starting point. What is the ratio of the magnitude of ?2 to the magnitude of ?1? You may neglect the effects of gravity on the proton.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT