Question

In: Physics

A space station in the shape of a uniform disk (mass 4.45x105 kg, radius 262 m)...

A space station in the shape of a uniform disk (mass 4.45x105 kg, radius 262 m) rotates with period 86.1 seconds. There are also 734 astronauts (whom you can treat as point particles) working inside the space station, each of mass 155 kg, and all standing on the outside rim and rotating with the station. Now, all the astronauts move to a conference room at the very center of the space station. Find the new period of the rotation of the space station.

Solutions

Expert Solution

Mass of the space station is

Radius of the space station is R=262m

Moment of inertia of the space station is equal to the moment of inertia of a disk of mass M and radius R

Astronauts can be considered as point masses. The moment of inertia of a point mass m at a distance r from the axis of rotation is

There are 734 astronauts, the moment of inertia of the astronauts is

Initially, astronauts are at r=R

Finally, they are at the center r=0

Total initial moment of inertia of the space station+astronauts system is

Total final moment of inertia is

Initial time period of rotation of the space station is Ti=86.1s

The initial angular speed of the space station is

Similarly, final angular speed of the space station is

Initial angular momentum of the system is

Final angular moment of the system is

Applying conservation of momentum


Related Solutions

A space station in the shape of a uniform disk (mass 8.44x105 kg, radius 687 m)...
A space station in the shape of a uniform disk (mass 8.44x105 kg, radius 687 m) rotates with period 86.3 seconds. There are also 781 astronauts (whom you can treat as point particles) working inside the space station, each of mass 188 kg, and all standing on the outside rim and rotating with the station. Now, all the astronauts move to a conference room at the very center of the space station. Find the new period of the rotation of...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 313 N at the edge of the disk on the +x-axis, 2) a force 313 N at the edge of the disk on the –y-axis, and 3) a force 313 N acts at the edge of the disk at an angle θ =...
A uniform disk with mass m = 9.28 kg and radius R = 1.42 m lies...
A uniform disk with mass m = 9.28 kg and radius R = 1.42 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 345 N at the edge of the disk on the +x-axis, 2) a force 345 N at the edge of the disk on the –y-axis, and 3) a force 345 N acts at the edge of the disk at an angle θ =...
A uniform disk with mass m = 9.44 kg and radius R = 1.32 m lies...
A uniform disk with mass m = 9.44 kg and radius R = 1.32 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 318 N at the edge of the disk on the +x-axis, 2) a force 318 N at the edge of the disk on the –y-axis, and 3) a force 318 N acts at the edge of the disk at an angle θ =...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. What is the angular velocity (in rad/s) at the instant the disk has completed four revolutions. The disk starts from rest. Group of answer choices 3.78 rad/s 3.87 rad/s 2.35...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm is mounted on a motor through its center. The motor accelerates the disk uniformly from rest by exerting a constant torque of 1.50 N · m. (a) What is the time required for the disk to reach an angular speed of 8.50 ✕ 102 rpm? (b) What is the number of revolutions through which the disk spins before reaching this angular speed? 2. A...
A uniform disk with radius 0.310 m and mass 30.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.310 m and mass 30.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to ?(t)=( 1.10 rad/s)t+( 6.90 rad/s2 )t2 What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.100 rev ?
A flat uniform circular disk (radius = 2.90 m, mass = 1.00 ✕ 102 kg) is...
A flat uniform circular disk (radius = 2.90 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a frictionless axis perpendicular to the center of the disk. A 40.0 kg person, standing 1.75 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.80 m/s relative to the ground. Find the resulting angular speed of the disk (in...
A uniform disk with mass 8.5 kg and radius 8 m is pivoted at its center...
A uniform disk with mass 8.5 kg and radius 8 m is pivoted at its center about a horizontal, frictionless axle that is stationary. The disk is initially at rest, and then a constant force 31.5N is applied to the rim of the disk. The force direction makes an angle of 35 degrees with the tangent to the rim. What is the magnitude v of the tangential velocity of a point on the rim of the disk after the disk...
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp of length 4.70 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s (b) Find the angular speed of the disk at the bottom of the ramp. rad/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT