Question

In: Statistics and Probability

A box contains 90 discs numbered 1 to 90. One disc is drawn at random from the box. What is the probability that is bears

A box contains 90 discs numbered 1 to 90. One disc is drawn at random from the box. What is the probability that is bears

 

(i) a two-digit number

 

(ii) a perfect square

 

(iii) a multiply of 5

 

(iv) a number divisible by 3 and 5.

Solutions

Expert Solution

(i) Total number of possible outcomes = 90 (Since the disks are numbered from 1 to 90).

Number of favourable outcomes of the event E     = Number of two-digit numbers from 1 to 90

  = 90 - 9 = 81 (Since all are two-digit numbers except 1 to 9)

Therefore, P(E) = Number of Favourable Outcomes of the Event ETotal Number of Possible Outcomes

                       = 81/90

                       = 9/10.

 

ii) Total number of possible outcomes = 90.

 

Number of favourable outcomes of the event F

= Number of perfect squares from 1 to 90

 = 9 [Since 1, 4, 9, 16, 25, 36, 49, 64 and 81 are perfect squares).

Therefore, by definition, P(F) = 9/90

                                           = 1/10.

 

 

(iii) Total number of possible outcomes = 90.

Number of favourable outcomes of the event G

= Number of multiples of 5 among numbers from 1 to 90

 = 18 [Since 5 × 1, 5 × 2, 5 × 3, ...., 5 × 18 are multiple of 5).

Therefore, by definition, P(G) = 18/90

                                           = 1/5.

 

(iv) Total number of possible outcomes = 90.

Number of favourable outcomes of the event H

= Number of numbers divisible by 3 and 5 from 1 to 90

= Number of numbers divisible by 15 from 1 to 90

= 6 [Since 15 × 1, 15 × 2, 15 × 3, ...., 15 × 6 are divisible by 15).

Therefore, by definition, P(H) = 6/90

                                           = 1/15.


(i) 9/10

(ii)1/10

(iii)1/5

(iv)1/15

Related Solutions

A box contains shiny pennies and  dull pennies. One by one, pennies are drawn at random from...
A box contains shiny pennies and  dull pennies. One by one, pennies are drawn at random from the box and not replaced. Find the probability that it will take more than four draws until the third shiny penny appears.
A box is chosen at random, and an apple is drawn from them. If the apple is medium. What is the probability that it was removed from the box?
There are three boxes of apples, containing two dozen apples each. Apples are classified as follows: large, medium, and small. The content of each box: A, B and C, is as follows:BoxesBig AppleMedium Applesmall appleTotalA681024B1014024C128424A box is chosen at random, and an apple is drawn from them. If the apple is medium. What is the probability that it was removed from the box?a) Ab) Bc) C
A box contains 5 chips marked 1,2,3,4, and 5. One chip is drawn at random, the...
A box contains 5 chips marked 1,2,3,4, and 5. One chip is drawn at random, the number on it is noted, and the chip is replaced. The process is repeated with another chip. Let X1,X2, and X3 the outcomes of the three draws which can be viewed as a random sample of size 3 from a uniform distribution on integers. a [10 points] What is population from which these random samples are drawn? Find the mean (µ) and variance of...
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and...
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and without replacement. Let A be the event that “Exactly two odd-numbered balls are drawn and they occur on odd-numbered draws from the urn.” What is the probability of event A? Please explain Thank you
A box contains 4 tickets. 1 ticket is numbered 0, 1 ticket is numbered 1, and...
A box contains 4 tickets. 1 ticket is numbered 0, 1 ticket is numbered 1, and 2 tickets are numbered 2. Suppose n draws with replacement are made from this box. Let Sn be the sum of the numbers drawn. a) Approximate the probability P(S100=100)
A card is drawn at random from a deck of cards. What is the probability that...
A card is drawn at random from a deck of cards. What is the probability that (a) it is a heart, given that it is red? (b) it is higher than a 10, given that it is a heart? (Interpret J, Q, K, A as 11, 12, 13, 14.) (c) it is a jack, given that it is red?
A box contains eight chips numbered 1 through 8. You randomly select three at random without...
A box contains eight chips numbered 1 through 8. You randomly select three at random without replacement. (a) What is the probability that the largest chip selected is chip number 5? (b) What is the probability that you select two odd numbered chips and a even numbered chip? (c) What is the probability that at least one of the chips is numbered 6 or higher? Please include any theorems or principles you use in your explanation. Thank you.
An urn contains twenty chips, numbered 1 through 20. Two are drawn simultaneously. What is the...
An urn contains twenty chips, numbered 1 through 20. Two are drawn simultaneously. What is the probability that the numbers on the 2 chips will differ by more than 2? Could you please specifically tell me how the # of ways to select a difference of less than 2 is 37 (19+18)?
Suppose a simple random sample of 90 students from this district is drawn. What is the...
Suppose a simple random sample of 90 students from this district is drawn. What is the probability that at least half of them have either brown or green eyes? (Use technology. Round your answer to three decimal places.) brown eyes is 40%, green eyes is 20%.
what is the probability? A jar contains 4 red marbles, numbered 1 to 4, and 12...
what is the probability? A jar contains 4 red marbles, numbered 1 to 4, and 12 blue marbles numbered 1 to 12. a) A marble is chosen at random. If you’re told the marble is blue, what is the probability that it has the number 2 on it? b) The first marble is replaced, and another marble is chosen at random. If you’re told the marble has the number 1 on it, what is the probability the marble is blue?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT