Question

In: Math

show your work. Find the sin t and cos t for t =150o. You may need...

show your work. Find the sin t and cos t for t =150o.

You may need to draw the reference angle first, but you only have to enter the sine and cosine values.

Solutions

Expert Solution

The given question can be solved by the knowledge of the sign of trigonometric functions in different quadrants, and to use of reference angle to find the trigonometric values.

Please do upvote if you found the solution helpful. Feel free to ask any doubt regarding this question in the comment section. Thanks!


Related Solutions

If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >,...
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >, use the formula below to find the given derivative. d/(dt)[u(t)* v(t)] = u'(t)* v(t) + u(t)*  v'(t) d/(dt)[u(t) x v(t)] = <.______ , _________ , _______>
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between...
Show that at every point on the curve r(t) = <(e^(t)*cos(t)), (e^(t)*sin(t)), e^t> the angle between the unit tangent vector and the z-axis is the same. Then show that the same result holds true for the unit normal and binormal vectors.
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the...
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t)   =    N(t)   =    (b) Use this formula to find the curvature. κ(t) =
Show that in 2D, the general orthogonal transformation as matrix A given by {{cos, sin}, {-sin,...
Show that in 2D, the general orthogonal transformation as matrix A given by {{cos, sin}, {-sin, cos}}. Verify that det[A] = 1 and that the transpose of A equals its inverse. Let Tij be a tensor in this space. Write down in full the transformation equations for all its components and deduce that Tii is an invariant.
Y(t) = 4sin(-120 pi t) cos(-200 pi t) sin(-200 pi t) Find all frequency responses of...
Y(t) = 4sin(-120 pi t) cos(-200 pi t) sin(-200 pi t) Find all frequency responses of Y(f) and F{y(t)} Find frequencies if y(t) is sampled at fs=40 and fs=100 Pllt magnitude and phase response of F{y[n]} where the range of n is -2pi to 2pi
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is...
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is a cycloid. (a) Find the slope of the tangent line to the cycloid for 0 < t < 2π. dy dx (b) Find an equation of the tangent line to the cycloid at t = π 3 (c) Find the length of the cycloid from t = 0 to t = π 2
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line...
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line to curve when t=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT