Question

In: Statistics and Probability

A random sample of 5 states gave the following areas (in 1000 square miles; same data...

A random sample of 5 states gave the following areas (in 1000 square miles; same data as Problem 2-38, incidentally): 147, 84, 24, 85, 159 a) Find the 95% confidence interval for the mean area for all 50 states in the United States. 13. A real estate agent wants to estimate the average selling price of houses in a suburb of Atlanta. It randomly samples 25 recent sales and calculates the average price = $148,000 and the standard deviation s = $62,000. a) Calculate a 95% confidence interval for the mean of all recent selling prices. 12. A random sample of 5 states gave the following areas (in 1000 square miles; same data as Problem 2-38, incidentally): 147, 84, 24, 85, 159 a) Find the 95% confidence interval for the mean area for all 50 states in the United States.

Solutions

Expert Solution

13)

sample std dev ,    s =    62000.0000
Sample Size ,   n =    25
Sample Mean,    x̅ =   148000.0000

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   24          
't value='   tα/2=   2.064   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   62000/√25=   12400.0000          
margin of error , E=t*SE =   2.0639   *   12400.0000   =   25592.342
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    148000.00   -   25592.3422   =   122407.6578
Interval Upper Limit = x̅ + E =    148000.00   -   25592.3422   =   173592.3422
95%   confidence interval is (   122407.66   < µ <   173592.34   )

................

Please let me know in case of any doubt.

Thanks in advance!


Please upvote!


Related Solutions

The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 41.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 34.0 34.7 35.4 36.0 36.2 37.3 37.6 37.7 37.9 38.1 38.5 38.6 39.0 39.2 39.4 39.9 40.7 41.4 41.8...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 36.3 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? LOADING... Click the icon to view the data 32.5 35.9 38.0 38.6 39.9 42.4 34.4 36.3 38.1 38.7 40.6 42.7...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 38.4 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.5; 35.9; 37.6; 38.6; 40.4; 42.5; 34.0; 36.2; 37.8; 38.9; 40.6; 42.6; 34.7; 37.3; 38.1; 39.4 ;41.3; 43.4; 35.6; 37.4;...
the accompanying data represent the miles per gallon of a random sample of cars with a​...
the accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) compute the​ z-score corresponding to the individual who obtained 38.7 miles per gallon. interpret this result. ​(b) determine the quartiles. ​(c) compute and interpret the interquartile​ range, iqr. ​(d) determine the lower and upper fences. are there any​ outliers?39.939.9 42.442.4 34.634.6 36.336.3 38.138.1 38.938.9 40.540.5 42.842.8 34.734.7 37.537.5 38.338.3 39.439.4 41.441.4 43.643.6 35.235.2 37.637.6 38.538.5 39.739.7 41.641.6 49.049.0
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 39.839.8 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.4 34.1 34.5 35.7 36.1 36.3 37.5 37.7 37.9 38.1 38.3 38.5 38.7 39.1 39.5 39.8 39.9 40.6 41.3 41.6...
The accompanying data represent the miles per gallon of a random sample of cars with a​...
The accompanying data represent the miles per gallon of a random sample of cars with a​ three-cylinder, 1.0 liter engine. ​(a) Compute the​ z-score corresponding to the individual who obtained 32.7 miles per gallon. Interpret this result. ​(b) Determine the quartiles. ​(c) Compute and interpret the interquartile​ range, IQR. ​(d) Determine the lower and upper fences. Are there any​ outliers? 32.7 35.9 38.0 38.7 40.2 42.2 34.4 36.2 38.1 38.9 40.7 42.7 34.6 37.5 38.2 39.5 41.5 43.6 35.2 37.8...
The following table gives the total area in square miles​ (land and​ water) of seven states....
The following table gives the total area in square miles​ (land and​ water) of seven states. Complete parts​ (a) through​ (c). State Area 1 52,300 2 615,400 3 115,000 4 53,200 5 159,300 6 104,500 7 6,400 b. Which state is an outlier on the high​ end? If you eliminate this​ state, what are the new mean and median areas for this data​ set? State 2 is an outlier on the high end. The new mean is 81783 square miles....
The following table gives the total area in square miles​ (land and​ water) of seven states....
The following table gives the total area in square miles​ (land and​ water) of seven states. Complete parts​ (a) through​ (c). State   Area 1   52,300 2   615,400 3   115,000 4   53,600 5   159,500 6   104,800 7   6,100 a. Find the mean area and median area for these states. The mean is __ square miles. ​(Round to the nearest integer as​ needed.) The median is ___ square miles. b. Which state is an outlier on the high​ end? If you eliminate...
The following data represent crime rates per 1000 population for a random sample of 46 Denver...
The following data represent crime rates per 1000 population for a random sample of 46 Denver neighborhoods.† 63.2 36.3 26.2 53.2 65.3 32.0 65.0 66.3 68.9 35.2 25.1 32.5 54.0 42.4 77.5 123.2 66.3 92.7 56.9 77.1 27.5 69.2 73.8 71.5 58.5 67.2 78.6 33.2 74.9 45.1 132.1 104.7 63.2 59.6 75.7 39.2 69.9 87.5 56.0 154.2 85.5 77.5 84.7 24.2 37.5 41.1 (a) Use a calculator with mean and sample standard deviation keys to find the sample mean x...
The following data represent crime rates per 1000 population for a random sample of 46 Denver...
The following data represent crime rates per 1000 population for a random sample of 46 Denver neighborhoods.† 63.2 36.3 26.2 53.2 65.3 32.0 65.0 66.3 68.9 35.2 25.1 32.5 54.0 42.4 77.5 123.2 66.3 92.7 56.9 77.1 27.5 69.2 73.8 71.5 58.5 67.2 78.6 33.2 74.9 45.1 132.1 104.7 63.2 59.6 75.7 39.2 69.9 87.5 56.0 154.2 85.5 77.5 84.7 24.2 37.5 41.1 (a) Use a calculator with mean and sample standard deviation keys to find the sample mean x...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT