Question

In: Advanced Math

at t=0,a tank contains Q0 g of the salt dissolved in 100L of water, assume that...

at t=0,a tank contains Q0 g of the salt dissolved in 100L of water, assume that water containing 1/4g of salt per L in entering the tank at a rate of r L/min. at the same time, the well-mixed mixture is draining from the tank at the same rate.

a) set up the differential equation and initial condition for the salt amount Q as a function of time.

b)find the amount of salt in the tank as a function of time t, Q(t), by solving the differential equation in the above problem.

c) when t->infinit , meaning after a long time, what is the limt amount Qlimit?

Solutions

Expert Solution


Related Solutions

At time t = 0 a tank contains 25lb of salt dissolved in 100 gallons of...
At time t = 0 a tank contains 25lb of salt dissolved in 100 gallons of water. assume that water containing 2lb salt/gallon enters the tank at a rate of 5 gal/min and the well-stirred solution is leaving the tank at the same rate. solve for Q(t) [Amount of salt in tank at time t ]
At time t=0 a tank holds 550 gallons of water with 100 pounds of dissolved salt....
At time t=0 a tank holds 550 gallons of water with 100 pounds of dissolved salt. An input pipe brings in solution at 8 gallons per minute at a concentration of 2 pounds per gallon. An output pipe carries away solution at 2 gallons per minute. Find how much salt is in the tank after 45 minutes.
A 2 liter tank of water contains 3 grams of salt at time t = 0...
A 2 liter tank of water contains 3 grams of salt at time t = 0 (in minutes). Brine with concentration 3t grams of salt per liter at time t is added at a rate of one liter per minute. The tank is mixed well and is drained at 1 liter per minute. At what positive time is there a minimum amount of salt and what is that amount?
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters...
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? (b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.)
A 200 gallon tank initial contains 100 gallons of water and 20 pounds of dissolved salt....
A 200 gallon tank initial contains 100 gallons of water and 20 pounds of dissolved salt. Brine solution begins to enter the tank at the rate of 2 gal/min with a salt concentration of 2 lb/gal. The well mixed solution leaves the tank at the rate of 1 gal/min. Find the amount of salt inside the tank 50 minutes after the process starts?
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at...
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at the rate 6L/min. The solution is mixed and drains from the tank at the rate 3L/min. ) Find the concentration(kg/L) of salt in the solution in the tank as time approaches infinity. (Assume your tank is large enough to hold all the solution.)
A tank contains 365 gallons of water and 50 oz of salt. Water containing a salt...
A tank contains 365 gallons of water and 50 oz of salt. Water containing a salt concentration of 1/6(1 + 1/4 sin t) oz/gal flows into the tank at a rate of 8 gal/min, and the mixture in the tank flows out at the same rate. The long-term behavior of the solution is an oscillation about a certain constant level. a) What is this level? b) What is the amplitude of the oscillation?
A tank contains 200 gal of water and 50oz of salt. Water containing a salt concentration...
A tank contains 200 gal of water and 50oz of salt. Water containing a salt concentration of 1/8(1+1/2 sint) oz/gal flows into the tank at a rate of 4 gal/min, the mixture flows out at the same rate. A) find the amount of salt in the tank at any moment. Q(t) = B) the amplitude of oscillation is C) level of the amplitude is
A tank contains 360 gallons of water and 50 oz of salt. Water containing a salt...
A tank contains 360 gallons of water and 50 oz of salt. Water containing a salt concentration of 1 6 (1 + 1 4 sin t) oz/gal flows into the tank at a rate of 8 gal/min, and the mixture in the tank flows out at the same rate. The long-term behavior of the solution is an oscillation about a certain constant level. a) What is this level? b) What is the amplitude of the oscillation? (Round your answers to...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A brine containing 3 ​lb/gal of salt runs into the tank at the rate of 4 gal/min.The mixture is kept uniform by stirring and flows out of the tank at the rate of 3 gal/min. Let y represent the amount of salt at time t. Complete parts a through e. a. At what rate​ (pounds per​ minute) does salt enter the tank at time​ t?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT