In: Statistics and Probability
Question 1
| Sales | Advertising | Price | 
| 157.7301 | 114.9536 | 187 | 
| 121.1506 | 141.0268 | 186.3123 | 
| 106.4625 | 153.3305 | 186.2964 | 
| 127.5707 | 110.1133 | 136.1812 | 
| 174.9113 | 159.3815 | 159.1798 | 
| 100.1009 | 143.0154 | 182.8766 | 
| 130.0771 | 153.8483 | 158.7549 | 
| 158.8319 | 123.3517 | 177.6487 | 
| 166.3804 | 151.2224 | 126.3865 | 
| 149.9134 | 104.4393 | 157.523 | 
| 141.8844 | 120.7072 | 126.7821 | 
| 152.5924 | 110.5488 | 106.5236 | 
| 102.5648 | 120.516 | 130.9825 | 
| 137.5087 | 138.0106 | 153.2031 | 
| 131.2427 | 122.6614 | 165.1192 | 
| 129.1159 | 104.0119 | 112.1737 | 
| 166.0645 | 181.9792 | 146.8946 | 
| 100.4567 | 122.4835 | 167.7717 | 
| 114.7491 | 122.964 | 127.3822 | 
| 122.9083 | 126.5962 | 138.4009 | 
| 183.8643 | 182.8872 | 168 | 
| 101.4258 | 128.4283 | 127.2866 | 
| 118.4291 | 152.4145 | 160.04 | 
| 152.4756 | 184.5918 | 111.4037 | 
| 150.6595 | 166.8079 | 111.1329 | 
| 116.7936 | 132.5331 | 166.7229 | 
| 107.7582 | 116.9184 | 137.8592 | 
| 119.5469 | 124.1774 | 142.0437 | 
| 133.1358 | 171.3747 | 150.8799 | 
| 108.9371 | 137.8592 | 127.8202 | 
| 178.1877 | 128.5637 | 138.8044 | 
| 157.0583 | 142.5853 | 156.0096 | 
| 150.625 | 183.9174 | 145.7502 | 
| 127.2361 | 120.9435 | 185.4388 | 
| 144.2846 | 117.768 | 117.7202 | 
| 161.6968 | 178.6099 | 101.8665 | 
| 149.0532 | 165.2546 | 165.0051 | 
| 152.3349 | 140.1559 | 120.0726 | 
| 145.2139 | 137.5114 | 113.7561 | 
| 161.2481 | 104.6571 | 103.5632 | 
| 141.587 | 182.3801 | 166.6539 | 
| 137.6707 | 113.2118 | 104.9544 | 
| 186.6548 | 117.1865 | 107.9175 | 
| 165.5812 | 162.9686 | 141.3799 | 
| 110.8753 | 125.3696 | 139.901 | 
| 136.8317 | 120.2691 | 177.3965 | 
| 149.8364 | 129.1319 | 169.6674 | 
| 107.4874 | 175.1715 | 106.89 | 
| 181.2995 | 180.2666 | 154.6262 | 
| 100.7248 | 131.4843 | 131.7259 | 
| 101.848 | 186.2991 | 182.935 | 
| 175.2219 | 186.8301 | 163.9616 | 
(i)
| Sales | Advertising | Price | |
| Sales | 1.000 | ||
| Advertising | .249 | 1.000 | |
| Price | -.130 | .151 | 1.000 | 
r = -0.130
The hypothesis being tested is:
H0: 
 = 0
H1: 
 ≠ 0
| Source | SS | df | MS | F | p-value | 
| Regression | 540.5628 | 1 | 540.5628 | 0.86 | .3586 | 
| Residual | 31,481.2638 | 50 | 629.6253 | ||
| Total | 32,021.8266 | 51 | 
The p-value is 0.3586.
Since the p-value (0.3586) is greater than the significance level (0.04), we fail to reject the null hypothesis.
Therefore, we cannot conclude that the relationship is significant.
(ii) The regression equation is:
y = 156.8587 - 0.1260*x
| variables | coefficients | std. error | t (df=50) | p-value | 
| Intercept | 156.8587 | |||
| Price | -0.1260 | 0.1359 | -0.927 | .3586 | 
The regression equation is:
y = 104.5359 + 0.2410*x
| variables | coefficients | std. error | t (df=50) | p-value | 
| Intercept | 104.5359 | |||
| Advertising | 0.2410 | 0.1327 | 1.816 | .0754 | 
(iii)
| variables | coefficients | std. error | t (df=49) | p-value | 
| Intercept | 125.0632 | |||
| Advertising | 0.2661 | 0.1335 | 1.993 | .0519 | 
| Price | -0.1662 | 0.1336 | -1.244 | .2194 | 
The hypothesis being tested is:
H0: β1 = β2 = 0
H1: At least one βi ≠ 0
The p-value is 0.0519.
Since the p-value (0.0519) is greater than the significance level (0.05), we fail to reject the null hypothesis.
Therefore, we cannot conclude that the slope is significant.
The hypothesis being tested is:
H0: β2 = 0
H1: β2 ≠ 0
The p-value is 0.2194.
Since the p-value (0.2194) is greater than the significance level (0.05), we fail to reject the null hypothesis.
Therefore, we cannot conclude that the slope is significant.
(iv)
| Predicted values for: Sales | ||
| Advertising | Price | Predicted | 
| 114.9536 | 187.0000 | 124.5652928 | 
| 141.0268 | 186.3123 | 131.6169137 | 
| 153.3305 | 186.2964 | 134.8932083 | 
| 110.1133 | 136.1812 | 131.7246678 | 
| 159.3815 | 159.1798 | 141.0105944 | 
(v) The hypothesis being tested is:
H0: µ1 = µ2 = µ3
Ha: Not all means are equal
| Mean | n | Std. Dev | |||
| 138.61153 | 52 | 25.057513 | Sales | ||
| 141.41712 | 52 | 25.864454 | Advertising | ||
| 144.85727 | 52 | 25.845311 | Price | ||
| 141.62864 | 156 | 25.555002 | Total | ||
| ANOVA table | |||||
| Source | SS | df | MS | F | p-value | 
| Treatment | 1,017.730953 | 2 | 508.8654763 | 0.78 | .4616 | 
| Error | 1,00,206.281846 | 153 | 654.9430186 | ||
| Total | 1,01,224.012798 | 155 | 
The p-value is 0.4616.
Since the p-value (0.4616) is greater than the significance level (0.03), we fail to reject the null hypothesis.
Therefore, we cannot conclude that not all means are equal.
Please give me a thumbs-up if this helps you out. Thank you!