In: Statistics and Probability
Consider the following sample data:
x 22 24 27 21 23 14 14 15
y 101 139 250 88 87 14 16 20
Data is in the spreadsheet.
Use Excel's Regression tool in Data Analysis to find the sample regression equation for the model: y = β0 + β1x + ε. What is the coefficient for β0 ? (Enter your answer rounded to 2 decimal places. If you got 876.36905323 for your answer, you would type 876.37)
x | y |
22 | 101 |
24 | 139 |
27 | 250 |
21 | 88 |
23 | 87 |
14 | 14 |
14 | 16 |
15 | 20 |
Using Excel's "Data Analysis", we generate the following outcome (to generate the results, have variables x and y in excel like above, then go to "Data" tab, select "Data Analysis" and there specify the range of variables x and y. If "Data Analysis" is not visible in "Data" tab then first go to "File", select "Options", then choose "Add-Ins", in the main window at bottom click "Go..." after "Excel Add-Ins" then from the list choose "Analysis ToolPak")
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.92307136 | |||||||
R Square | 0.852060736 | |||||||
Adjusted R Square | 0.827404192 | |||||||
Standard Error | 33.04371817 | |||||||
Observations | 8 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 37732.55114 | 37732.55114 | 34.5571844 | 0.001073505 | |||
Residual | 6 | 6551.323864 | 1091.887311 | |||||
Total | 7 | 44283.875 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -203.4659091 | 51.16686412 | -3.97651708 | 0.007312281 | -328.6667153 | -78.2651029 | -328.6667153 | -78.2651029 |
X Variable 1 | 14.64204545 | 2.490763974 | 5.878535906 | 0.001073505 | 8.547365568 | 20.73672534 | 8.547365568 | 20.73672534 |
0 is the Intercept of the model.
So, 0 is -203.47 (from the above table)