In: Statistics and Probability
Confidence Intervals (Proportions)
1
Out of 400 people sampled, 312 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A.
Use a 99% confidence level, and give your answers as decimals, to three places.
< p<
2 Assume that a sample is used to estimate a population proportion p. Find the 98% confidence interval for a sample of size 348 with 207 successes. Enter your answer as a tri-linear inequality using decimals (not percents) accurate to three decimal places.
< p <
3 Out of 500 people sampled, 260 preferred Candidate A. Based on this, estimate what proportion of the voting population (p) prefers Candidate A.
Use a 99% confidence level, and give your answers as decimals, to three places.
< p
4 Giving a test to a group of students, the grades and gender
are summarized below
| A | B | C | Total | |
| Male | 9 | 6 | 2 | 17 | 
| Female | 16 | 13 | 12 | 41 | 
| Total | 25 | 19 | 14 | 58 | 
Let p represent the proportion of all female students who would
receive a grade of B on this test. Use a 98% confidence interval to
estimate p to three decimal places.
< p<
1)
Level of Significance,   α =   
0.01          
Number of Items of Interest,   x =  
312          
Sample Size,   n =    400  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.780          
z -value =   Zα/2 =    2.576   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0207          
margin of error , E = Z*SE =    2.576  
*   0.0207   =   0.0534
          
       
99%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.780  
-   0.0534   =   0.7266
Interval Upper Limit = p̂ + E =   0.780  
+   0.0534   =   0.8334
          
       
99%   confidence interval is (   0.727 < p
<    0.833 )
2)
Level of Significance,   α =   
0.02          
Number of Items of Interest,   x =  
207          
Sample Size,   n =    348  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.595          
z -value =   Zα/2 =    2.326   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0263          
margin of error , E = Z*SE =    2.326  
*   0.0263   =   0.0612
          
       
98%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.595  
-   0.0612   =   0.5336
Interval Upper Limit = p̂ + E =   0.595  
+   0.0612   =   0.6560
          
       
98%   confidence interval is (   0.534 < p
<    0.656 )
3)
Level of Significance,   α =   
0.01          
Number of Items of Interest,   x =  
260          
Sample Size,   n =    500  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.520          
z -value =   Zα/2 =    2.576   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0223          
margin of error , E = Z*SE =    2.576  
*   0.0223   =   0.0576
          
       
99%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.520  
-   0.0576   =   0.4624
Interval Upper Limit = p̂ + E =   0.520  
+   0.0576   =   0.5776
          
       
99%   confidence interval is (   0.462 < p
<    0.578 )
4)
Level of Significance,   α =   
0.02          
Number of Items of Interest,   x =  
13          
Sample Size,   n =    58  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.224          
z -value =   Zα/2 =    2.326   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0548          
margin of error , E = Z*SE =    2.326  
*   0.0548   =   0.1274
          
       
98%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.224  
-   0.1274   =   0.0968
Interval Upper Limit = p̂ + E =   0.224  
+   0.1274   =   0.3515
          
       
98%   confidence interval is (   0.097 < p
<    0.352 )
THANKS
revert back for doubt
please upvote