Question

In: Statistics and Probability

Confidence Intervals (Proportions) 1 Out of 400 people sampled, 312 preferred Candidate A. Based on this,...

Confidence Intervals (Proportions)

1

Out of 400 people sampled, 312 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A.

Use a 99% confidence level, and give your answers as decimals, to three places.

< p<

2 Assume that a sample is used to estimate a population proportion p. Find the 98% confidence interval for a sample of size 348 with 207 successes. Enter your answer as a tri-linear inequality using decimals (not percents) accurate to three decimal places.

< p <

3 Out of 500 people sampled, 260 preferred Candidate A. Based on this, estimate what proportion of the voting population (p) prefers Candidate A.

Use a 99% confidence level, and give your answers as decimals, to three places.

< p

4 Giving a test to a group of students, the grades and gender are summarized below

A B C Total
Male 9 6 2 17
Female 16 13 12 41
Total 25 19 14 58



Let p represent the proportion of all female students who would receive a grade of B on this test. Use a 98% confidence interval to estimate p to three decimal places.

< p<

Solutions

Expert Solution

1)

Level of Significance,   α =    0.01          
Number of Items of Interest,   x =   312          
Sample Size,   n =    400          
                  
Sample Proportion ,    p̂ = x/n =    0.780          
z -value =   Zα/2 =    2.576   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0207          
margin of error , E = Z*SE =    2.576   *   0.0207   =   0.0534
                  
99%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.780   -   0.0534   =   0.7266
Interval Upper Limit = p̂ + E =   0.780   +   0.0534   =   0.8334
                  
99%   confidence interval is (   0.727 < p <    0.833 )

2)

Level of Significance,   α =    0.02          
Number of Items of Interest,   x =   207          
Sample Size,   n =    348          
                  
Sample Proportion ,    p̂ = x/n =    0.595          
z -value =   Zα/2 =    2.326   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0263          
margin of error , E = Z*SE =    2.326   *   0.0263   =   0.0612
                  
98%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.595   -   0.0612   =   0.5336
Interval Upper Limit = p̂ + E =   0.595   +   0.0612   =   0.6560
                  
98%   confidence interval is (   0.534 < p <    0.656 )

3)

Level of Significance,   α =    0.01          
Number of Items of Interest,   x =   260          
Sample Size,   n =    500          
                  
Sample Proportion ,    p̂ = x/n =    0.520          
z -value =   Zα/2 =    2.576   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0223          
margin of error , E = Z*SE =    2.576   *   0.0223   =   0.0576
                  
99%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.520   -   0.0576   =   0.4624
Interval Upper Limit = p̂ + E =   0.520   +   0.0576   =   0.5776
                  
99%   confidence interval is (   0.462 < p <    0.578 )

4)

Level of Significance,   α =    0.02          
Number of Items of Interest,   x =   13          
Sample Size,   n =    58          
                  
Sample Proportion ,    p̂ = x/n =    0.224          
z -value =   Zα/2 =    2.326   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0548          
margin of error , E = Z*SE =    2.326   *   0.0548   =   0.1274
                  
98%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.224   -   0.1274   =   0.0968
Interval Upper Limit = p̂ + E =   0.224   +   0.1274   =   0.3515
                  
98%   confidence interval is (   0.097 < p <    0.352 )

THANKS

revert back for doubt

please upvote



Related Solutions

Out of 600 people sampled, 390 preferred Candidate A. Based on this, find a 99% confidence...
Out of 600 people sampled, 390 preferred Candidate A. Based on this, find a 99% confidence level for the true proportion of the voting population ( p ) prefers Candidate A. Give your answers as decimals, to three places.
Out of 200 people sampled, 12 preferred Candidate A. Based on this, you will estimate what...
Out of 200 people sampled, 12 preferred Candidate A. Based on this, you will estimate what proportion of the voting population (pp) prefers Candidate A. Use technology to find a 90% confidence level, and give your answers as decimals, to four places. [_____ ,_______]
Out of 100 people sampled, 5 preferred Candidate A. Based on this, estimate what proportion of...
Out of 100 people sampled, 5 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A. Use a 90% confidence level, and give your answers as decimals, to three places. _____ < p < _______
Out of 200 people sampled, 120 preferred Candidate A. Based on this, estimate what proportion of...
Out of 200 people sampled, 120 preferred Candidate A. Based on this, estimate what proportion of the voting population ( π π ) prefers Candidate A. Use a 95% confidence level, and give your answers as decimals, to three places.
Out of 100 people sampled, 18 preferred Candidate A. Based on this, estimate what proportion of...
Out of 100 people sampled, 18 preferred Candidate A. Based on this, estimate what proportion of the voting population ( π π ) prefers Candidate A. Use a 90% confidence level, and give your answers as decimals, to three places. < π π
Out of 100 people sampled, 39 preferred Candidate A. Based on this, estimate what proportion of...
Out of 100 people sampled, 39 preferred Candidate A. Based on this, estimate what proportion of the voting population (pp) prefers Candidate A. Use a 90% confidence level, and give your answers as decimals, to three places. ___< p <___
Out of 500 people sampled, 320 preferred Candidate A. Based on this, estimate what proportion of...
Out of 500 people sampled, 320 preferred Candidate A. Based on this, estimate what proportion of the voting population (p) prefers Candidate A. Use a 90% confidence level, and give your answers as decimals, to three places. answer ____ < p < answer ____
Out of 600 people sampled, 300 preferred Candidate A. Based on this, estimate what proportion of...
Out of 600 people sampled, 300 preferred Candidate A. Based on this, estimate what proportion of the voting population ( p ) prefers Candidate A. Use a 99% confidence level, and give your answers as decimals, to three places.
Out of 500 people sampled, 115 preferred Candidate A. Based on this, estimate what proportion of...
Out of 500 people sampled, 115 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A. Use a 90% confidence level, and give your answers as decimals, to three places. < p Assume that a sample is used to estimate a population proportion p. Find the 90% confidence interval for a sample of size 366 with 102 successes. Enter your answer as a tri-linear inequality using decimals (not percents) accurate to three...
Out of 200 people sampled, 156 preferred Candidate A. Based on this, estimate what proportion of...
Out of 200 people sampled, 156 preferred Candidate A. Based on this, estimate what proportion of the voting population ( p p ) prefers Candidate A. Use a 99% confidence level, and give your answers as decimals, to three places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT