Question

In: Physics

thermodynamics: why can’t the van der Waaks equation extend itself to the low temperature regions near...

thermodynamics:
why can’t the van der Waaks equation extend itself to the low temperature regions near absolute zero ?

Solutions

Expert Solution

At high pressures and low temperatures, intermolecular forces between gas particles can cause significant deviation from ideal behavior.

Key Points

  • Ideal gases are modeled as interacting through perfectly elastic collisions, implying that intermolecular interactions do not significantly contribute to the gas particles’ energetics.
  • Real gas interactions, such as attractive and repulsive intermolecular forces, are more complex than perfectly elastic collisions; the significance of these contributions varies with the gases’ conditions.
  • The van der Waals equation takes into account these intermolecular forces and offers an improved model for real gas behavior.

The Ideal Gas Law is a convenient approximation for predicting the behavior of gases at low pressures and high temperatures. This equation assumes that gas molecules interact with their neighbors solely through perfectly elastic collisions, and that particles exert no intermolecular forces upon each other.

Intermolecular forces describe the attraction and repulsion between particles. They include:

  • Dipole -dipole forces
  • Ion-dipole forces
  • Dipole-induced dipole forces or Debye forces
  • Instantaneous dipole-induced dipole forces or London dispersion forces.

The contribution of intermolecular forces creates deviations from ideal behavior at high pressures and low temperatures, and when the gas particles’ weight becomes significant.

  • At low temperatures, gas particles have less kinetic energy, and therefore move more slowly; at slower speeds, they are much more likely to interact (attracting or repelling one another) upon collision. The Ideal Gas Law does not account for these interactions.

thumbs up please


Related Solutions

Derive constants for Van der Waals equation of state. Why is this equation used for? (Detailed...
Derive constants for Van der Waals equation of state. Why is this equation used for? (Detailed explanation and derivation)
Describe how you would determine, using the van der Waals equation of state, the temperature of...
Describe how you would determine, using the van der Waals equation of state, the temperature of a real gas mixture of 3 gasses (A,B and C) given the pressure P in the container, the mass of each gas mA, mB, mC, and the volume v of the container. You also have access to the critical properties (TCA, TCB, TCC, PCA, PCB, PCC) and molar masses (MA, MB, MC,) of each gas. Use these variables and list all equations and steps...
What is the role of the constants a and b in the van der waals equation...
What is the role of the constants a and b in the van der waals equation in terms of the kinetic molecular theory?
Use the van der Waals equation and the ideal gas equation to calculate the volume of...
Use the van der Waals equation and the ideal gas equation to calculate the volume of 1.000 mol of neon at a pressure of 500.0 bar and a temperature of 355.0 K. (Hint: One way to solve the van der Waals equation for V is to use successive approximations. Use the ideal gas law to get a preliminary estimate for V V in ideal gas V in van der waal gas
Why does a gas have more work when adjusted for idealness via Van der Waals equation...
Why does a gas have more work when adjusted for idealness via Van der Waals equation and Dieterici versus ideal gas equation. I have solved a problem where the gas has more work done when adjusting for idealness rather than just using the ideal gas equation. Why, in terms of intramolecular or intermolecular forces does this occur?
How can the Van Der Waals equation of state be used to determine whether a substance...
How can the Van Der Waals equation of state be used to determine whether a substance will be a solid, liquid or gas at a certain temperature and pressure?
At high pressures, real gases do not behave ideally. (a) Use the van der Waals equation...
At high pressures, real gases do not behave ideally. (a) Use the van der Waals equation and data in the text to calculate the pressure exerted by 29.0 g H2 at 20 degree C in a 1.00 L container. (b) Repeat the calculation assuming that the gas behaves like an Ideal gas.
H2O 5.537 5.465 0.0305 Use the van der Waals equation of state to calculate the pressure...
H2O 5.537 5.465 0.0305 Use the van der Waals equation of state to calculate the pressure of 3.00 mol of H2O at 463 K in a 3.60 L vessel. Van der Waals constants can be found here.Use the ideal gas equation to calculate the pressure under the same conditions. Use Atm
The van der Waals equation for 1 mole of gas is given by (p +av-2)(v -...
The van der Waals equation for 1 mole of gas is given by (p +av-2)(v - b) = RT. In general, curves of p versus v forvarious values of T exhibit a maximum and a minimum at the twopoints where (δp/δv)T = 0. The maximum and minumum coalesceinto a single point on that curve where(δ2p/δv2)T = 0 inaddition to (δp/δv)T = 0. This point is calledthe "critical point" of the substance and its temperature,pressure, and molar volume are denoted by...
For Van Der Waals equation (P + a/V2)(V - b) = nRT How can you find...
For Van Der Waals equation (P + a/V2)(V - b) = nRT How can you find the values of "a" and "b" using an experiment? Please explain the method of the experiment too
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT