Question

In: Physics

Three long, parallel conductors each carry a current of I = 1.98 A. The figure below...

Three long, parallel conductors each carry a current of I = 1.98 A. The figure below is an end view of the conductors, with each current coming out of the page. Taking a = 1.60 cm, determine the magnitude and direction of the magnetic field at the following points.

(a) point A

magnitude µT
direction ---Select--- to the left to the right toward the top of the page toward the bottom of the page into the page out of the page no direction


(b) point B

magnitude µT
direction ---Select--- to the left to the right toward the top of the page toward the bottom of the page into the page out of the page no direction


(c) point C

magnitude µT
direction

Solutions

Expert Solution


Related Solutions

Three parallel wires, each carrying a current I (left and right wire carry upward current and...
Three parallel wires, each carrying a current I (left and right wire carry upward current and middle wire carries downward current....but all wires have the same magnitude current). Four points are identified on the picture as well.   What are the directions of the magnetic fields at the four points, starting with point 1, then 2, etc. 1 Question options: 1: in, 2: in, 3: out, 4: out 1: in, 2: out, 3: out, 4: in none of these 1: out,...
Three long straight parallel wires are each carrying a steady current I in the same direction....
Three long straight parallel wires are each carrying a steady current I in the same direction. They are equidistant from each other with separation d. What force per unit length does one wire experience due to the other two?
Two long, parallel conductors, separated by 11.0 cm, carry currents in the same direction. The first wire carries...
Two long, parallel conductors, separated by 11.0 cm, carry currents in the same direction. The first wire carries a current I1 = 3.00 A, and the second carries I2 = 8.00 A. (See figure below. Assume the conductors lie in the plane of the page.) (a) What is the magnetic field created by I1 at the location of I2? magnitude  T direction  ---Select--- in the +x direction in the -x direction in the +y direction in the -y direction in the +z direction in the -z direction (b) What is the force per unit length exerted by I1 on I2?...
Long, straight conductors with square cross section each carrying current I, are laid side-by-side to form arn infinite current sheet with current directed out of the plane of the page (see the figure (Figure 1))
Long, straight conductors with square cross section each carrying current I, are laid side-by-side to form arn infinite current sheet with current directed out of the plane of the page (see the figure (Figure 1)). A second infinite current sheet is a distance d below the first and is parallel to it. The second sheet carries current into the plane of the page. Each sheet has n conductors per unit length. Part B Find the direction of the net magnetic field at...
In the figure below, the current in the long, straight wire is
In the figure below, the current in the long, straight wire isI1 = 8.40 Aand the wire lies in the plane of the rectangular loop, which carries a currentI2 = 10.0 A.The dimensions in the figure arec = 0.100 m,a = 0.150 m,andℓ = 0.720 m.Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire.magnitude  µNdirection---Select--- upward downward to the left to the right into the page out of the...
2. Two long coaxial solenoids each carry current I, but in opposite directions, as shown to...
Two long coaxial solenoids each carry current I, but in opposite directions, as shown to the right. The solenoids are both of length L, which can be assumed to be very long, and are centered along the z-axis. The inner solenoid (radius a) has n turns per unit length, and the outer one (radius b) has the same n turns per unit length. \(\vec{B}\) inside the inner solenoid, \(=\mathbf{B}_{\text {inner }}=\mu_{0} I\left(n_{1}-n_{2}\right) \mathbf{z} \quad\) And \(\quad \mathbf{B}_{\text {middle }}=-\mu_{0} n_{2} I...
Two very long straight wires carry current I in opposite directions as shown below. The distance...
Two very long straight wires carry current I in opposite directions as shown below. The distance from the origin to each of the wires is d. Draw the magnetic field vector on the figure for each of the points listed below. You must indicate both the magnitude and direction of the magnetic field at all points. The origin x=0, y=0 x= 2d, y=0 x= -2d, y=0 x=d, y = -d x= -d, y=d
Two long parallel wires each carry 2.8 A in the same direction, with their centers 1.5...
Two long parallel wires each carry 2.8 A in the same direction, with their centers 1.5 cm apart. Part B:Find the magnitude of the magnetic field at a point in the same plane as the wires, 1.5 cm from one wire and 3.0 cm from the other. Part C: Find the magnitude of the force of interaction (per length) between the wires
1) Two wires each of length I with current I are placed parallel to each other...
1) Two wires each of length I with current I are placed parallel to each other separated by a distance d. What physical quanti­ties can you determine using this information? How will the values of these quantities change if one of the currents is re­versed? If one of the currents is doubled? Include a diagram to explain your reasoning. 2) An electric motor has a square armature with 500 turns. Each side of the coil is 12 cm long and...
Two straight parallel wires carry currents in opposite directions as shown in the figure. One of...
Two straight parallel wires carry currents in opposite directions as shown in the figure. One of the wires carries a current of I2 = 10.2 A. Point A is the midpoint between the wires. The total distance between the wires is d = 12.1 cm. Point C is 5.03 cm to the right of the wire carrying current I2. Current I1 is adjusted so that the magnetic field at C is zero. Calculate the value of the current I1.Calculate the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT