In: Finance
There is a project which has EBT, depreciation, interest, debt and equity of $4.5, $1.5, $1, $40 and $60 million respectively. Its tax rate is 20%. Market rates of interest for similar risk to this company are 8%. The rate of return of the market is 11%, while the T bond rate is 4%. The bheta of this firm is 1.2. The cost of the project is $13million. As a result of the increased sales, the account receivable, inventory and accounts payable increase by $3, $5 and $1 million respectively. The rise in sales continue for 7 years. Is this an investment the firm should pursue? (What is its NPV?)


Formula sheet
| A | B | C | D | E | F | G | H | I | J | K | L |
| 2 | |||||||||||
| 3 | Free cash flow can be calculated as follows: | ||||||||||
| 4 | Free Cash Flow = Operating Cash Flow - Capital Expenditures - Change in working capital | ||||||||||
| 5 | Operating Cash Flow = EBIT*(1-Tax Rate)+Depreciation | ||||||||||
| 6 | |||||||||||
| 7 | Tax Rate | 0.2 | |||||||||
| 8 | |||||||||||
| 9 | Free cash Flow can be calculated as follows: | ||||||||||
| 10 | Year | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
| 11 | Initial Cost | -13 | |||||||||
| 12 | EBT | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | |||
| 13 | Less: Interest | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
| 14 | EBIT | =E12-E13 | =F12-F13 | =G12-G13 | =H12-H13 | =I12-I13 | =J12-J13 | =K12-K13 | |||
| 15 | Less: Tax Expense | =-E14*$D$7 | =-F14*$D$7 | =-G14*$D$7 | =-H14*$D$7 | =-I14*$D$7 | =-J14*$D$7 | =-K14*$D$7 | |||
| 16 | EBIT*(1-T) | =E14+E15 | =F14+F15 | =G14+G15 | =H14+H15 | =I14+I15 | =J14+J15 | =K14+K15 | |||
| 17 | Add Depreciation | 1.5 | =E17 | =F17 | =G17 | =H17 | =I17 | =J17 | |||
| 18 | Operatin Cash Flow | =E16+E17 | =F16+F17 | =G16+G17 | =H16+H17 | =I16+I17 | =J16+J17 | =K16+K17 | |||
| 19 | Capex | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
| 20 | Change in working Capital=(Change in current asset - change in current liabilities) | =(3+5-1) | 0 | 0 | 0 | 0 | 0 | 0 | |||
| 21 | Free Cash Flow | =D11 | =E18-E19-E20 | =F18-F19-F20 | =G18-G19-G20 | =H18-H19-H20 | =I18-I19-I20 | =J18-J19-J20 | =K18-K19-K20 | ||
| 22 | |||||||||||
| 23 | Calculation of cost of capital: | ||||||||||
| 24 | |||||||||||
| 25 | Formula for WACC is given as: | ||||||||||
| 26 | WACC = r(E) × w(E) + r(D) × (1 – t) × w(D) | ||||||||||
| 27 | Where, r(E) and r(D) are cost of equity and cost of debt, w(E) is weight of equity and W(D) is weight of debt and t is the tax rate | ||||||||||
| 28 | |||||||||||
| 29 | Calculation of cost of equity: | ||||||||||
| 30 | As Per CAPM, Expected rate of return can be calculated as | ||||||||||
| 31 | r(E) = rf + ?*(rm-rf) | ||||||||||
| 32 | Using the Following data | ||||||||||
| 33 | Beta (?) | 1.2 | |||||||||
| 34 | Risk free rate ( rf ) | 0.04 | |||||||||
| 35 | Rate of return of the market (rm) | 0.11 | |||||||||
| 36 | |||||||||||
| 37 | Expected rate of return can be calculated as follows: | ||||||||||
| 38 | Expected rate of return | = rf + ?*(rm-rf) | |||||||||
| 39 | =4%+1.2*(11% - 4%) | ||||||||||
| 40 | =D34+D33*(D35-D34) | =D34+D33*(D35-D34) | |||||||||
| 41 | |||||||||||
| 42 | Hence Cost of Equity is | =D40 | |||||||||
| 43 | |||||||||||
| 44 | Calculation of WACC: | ||||||||||
| 45 | Formula for WACC is given as: | ||||||||||
| 46 | WACC = r(E) × w(E) + r(D) × (1 – t) × w(D) | ||||||||||
| 47 | Where, r(E) and r(D) are cost of equity and cost of debt, w(E) is weight of equity and W(D) is weight of debt and t is the tax rate | ||||||||||
| 48 | |||||||||||
| 49 | Weight of equity, w(E) | =Market Value of equity / (Market Value of Debt + Market Value of equity) | |||||||||
| 50 | =60/(40+60) | ||||||||||
| 51 | |||||||||||
| 52 | Weight of debt, w(D) | =1- Weight of equity | |||||||||
| 53 | =1-D50 | ||||||||||
| 54 | |||||||||||
| 55 | Calculation of WACC | ||||||||||
| 56 | Tax rate | 0.3 | |||||||||
| 57 | Source of capital | Weight(w) | Cost(c) | ||||||||
| 58 | Debt | =D53 | 0.08 | ||||||||
| 59 | Equity | =D50 | =D42 | ||||||||
| 60 | |||||||||||
| 61 | WACC | = r(E) × w(E) + r(D) × (1 – t) × w(D) | |||||||||
| 62 | =E59*D59+E58*(1-D56)*D58 | =E59*D59+E58*(1-D56)*D58 | |||||||||
| 63 | |||||||||||
| 64 | Hence WACC is | =D62 | |||||||||
| 65 | |||||||||||
| 66 | NPV of the project can be calculated as follows: | ||||||||||
| 67 | |||||||||||
| 68 | NPV of the project is present value of future cash flows discounted at required rate of return less the initial investment. | ||||||||||
| 69 | Given the following cash flow and WACC, NPV for the project can be calculated as follows: | ||||||||||
| 70 | Year | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
| 71 | Free Cash Flow (FCF) | =D21 | =E21 | =F21 | =G21 | =H21 | =I21 | =J21 | =K21 | ||
| 72 | MARR (i) | =D64 | |||||||||
| 73 | (P/F,i,n) for each year | =1/((1+$D72)^E70) | =1/((1+$D72)^F70) | =1/((1+$D72)^G70) | =1/((1+$D72)^H70) | =1/((1+$D72)^I70) | =1/((1+$D72)^J70) | =1/((1+$D72)^K70) | |||
| 74 | Present Value of cash flows = FCF*(P/F,i,n) | =E71*E73 | =F71*F73 | =G71*G73 | =H71*H73 | =I71*I73 | =J71*J73 | =K71*K73 | |||
| 75 | Present value if future cash flows | =SUM(E74:K74) | =SUM(E74:K74) | ||||||||
| 76 | |||||||||||
| 77 | NPV for Project | =Present value fo future cash flows - Initial investment | |||||||||
| 78 | =D75+D71 | =D75+D71 | |||||||||
| 79 | |||||||||||
| 80 | Hence NPV of the project is | =D78 | |||||||||
| 81 | |||||||||||