In: Statistics and Probability
A random sample of 28 policies form insurance company A shows an average net profit of $39 per policy, with a standard deviation of $3.70 per policy. A random sample of 34 policies from insurance company B shows an average net profit of $47 per policy with a standard deviation of $3.90 per policy. Assume the policy profits are normally distributed and have unequal variances. Use a 0.01 level of significance to test whether the profits per policy are significantly greater for company B than for company A.
Ho :   µ1 - µ2 =   0  
       
Ha :   µ1-µ2 <   0  
       
          
       
Level of Significance ,    α =   
0.01          
          
       
Sample #1   ---->   sample 1  
       
mean of sample 1,    x̅1=   39.00  
       
standard deviation of sample 1,   s1 =   
3.7          
size of sample 1,    n1=   28  
       
          
       
Sample #2   ---->   sample 2  
       
mean of sample 2,    x̅2=   47.000  
       
standard deviation of sample 2,   s2 =   
3.90          
size of sample 2,    n2=   34  
       
          
       
difference in sample means = x̅1-x̅2 =   
39.000   -   47.0000   =  
-8.0000
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
0.9676          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -8.0000  
/   0.9676   ) =   -8.2677
          
       
          
       
  
p-value =        0.0000   [
excel function: =T.DIST(t stat,df) ]   
   
Conclusion:     p-value<α , Reject null
hypothesis  
           
There is enough evidence to say that the profits per policy are
significantly greater for company B than for company A.
...............
THANKS
revert back for doubt
please upvote