Question

In: Statistics and Probability

Suppose my utility function for asset position ? is given by ?(?) = ( ? 1000)...

Suppose my utility function for asset position ? is given by ?(?) = ( ? 1000) 2 . If I have $ 17,000 and I am considering the following two lotteries L1: With probability 1, I lose $1000. L2: With probability .78, I gain $0. With probability .22, I lose $10,000 a) Draw the lotteries and determine which lottery I select based in the utility value b) Determine which lottery I select based in the expected value

Solutions

Expert Solution

Given the utility function: U (x) = (x/1000)^2, where x would be the payoff

we will calculate utility value for both the cases

L1: the payoff is (-1000) with a probability of 1. That means it is sure to lose $1000 on it.

L2: the payoff is given as a 22% chance of losing $10000, i.e. (-10000) with the probability of 0.22 and a 78% chance of gaining $0, i.e. 0 with the probability of 0.78.

a).

Therefore Probabiltis are given as:: P(-1000) =1,

P(-10000)= 0.22,

p(0)= 0.78

U(L1) = P(-1000)*U(-1000) U(L2)

= P(-10000)*U(-10000) + P(0)*U(0)

= 1 * (-1000/1000)^2

= 0.22*(-10000/1000)^2 + 0.78 (0/1000)^2

= 1*(-1)^2

= 0.22*(100) + 0

U(L1) = 1 U(L2) = 22

U(L2)>U(L1)

That means the utility of L2 is higher for me. Therfore I would go with lottery L2 as per the utility value.

b).

The expected value is simply calculated by multiplying payoffs with their respective probabilities.

EV (L1) = (-1000)* p(-1000)

= (-1000) * 1

EV (L1) = (-1000)

EV (L2)= (-10000)*p(-10000) + 0 * P(0)

= (-10000)*0.22 + 0* 0.78

EV (L2) = (-2200)

EV(L1) > EV (L2)

THus as the expected value theorem states, choice with higher expected value should be chosen.

Thus as per elected value, Lottery L1 should be chosen.

----------------------------

DEAR STUDENT,

IF YOU HAVE ANY QUERY ASK ME IN THE COMMENT BOX,I AM HERE TO HELPS YOU.PLEASE GIVE ME POSITIVE RATINGS

*****************THANK YOU***************


Related Solutions

3. Suppose that my utility function is given by U=1-0.2D^2, where D is the value of...
3. Suppose that my utility function is given by U=1-0.2D^2, where D is the value of the disease. The first 4 months of the year, we have the flu, where D=2.The next 2 months, we are in perfect health, where D=0. The last 6 months of the year we have a head cold, D=1. What is the value of QALY? Round to THREE decimal points. 4. Suppose that drug A costs 15,000, and it extends life by 5 QALYS. What...
Suppose a consumer's utility function is given by U ( X , Y ) = X...
Suppose a consumer's utility function is given by U ( X , Y ) = X 1 2 Y 1 2. The price of X is PX=8 and the price of Y is PY=5. The consumer has M=80 to spend. You may find that it helps to draw a graph to organize the information in this question. You may draw in the blank area on the front page of the assignment, but this graph will not be graded. a) (2...
Suppose the utility function for goods q1 and q2 is given by U(q1, q2) = q1q2...
Suppose the utility function for goods q1 and q2 is given by U(q1, q2) = q1q2 + q2 6 (a) Calculate the uncompensated (Marshallian) demand functions for q1 and q2 2 (b) Describe how the uncompensated demand curves for q1 and q2 are shifted by changes in income (Y) or the price of the other good. 3 (c) Calculate the expenditure function for q1 and q2 such that minimum expenditure = E(p1, p2, U) 4 (d) Use the expenditure function...
1. Suppose the utility function for goods q1 and q2 is given by U(q1, q2) =...
1. Suppose the utility function for goods q1 and q2 is given by U(q1, q2) = q1q2 + q2 (a) Calculate the uncompensated (Marshallian) demand functions for q1 and q2 (b) Describe how the uncompensated demand curves for q1 and q2 are shifted by changes in income (Y) or the price of the other good. (c) Calculate the expenditure function for q1 and q2 such that minimum expenditure = E(p1, p2, U) (d) Use the expenditure function calculated in part...
Suppose that Anu’s utility function is given by U = √10W, where W represents annual income...
Suppose that Anu’s utility function is given by U = √10W, where W represents annual income in thousands of dollars. Suppose that Anu is currently earning an income of $40,000 (I = 40) and can earn that income next year with certainty. She is offered a chance to take a new job that offers a 0.6 probability of earning $44,000 and a 0.4 probability of earning $33,000. a. Should she take the new job? b. Assume Anu takes the new...
Suppose a consumer has a utility function given by u(x, y) = x + y, so...
Suppose a consumer has a utility function given by u(x, y) = x + y, so that the two goods are perfect substitutes. Use the Lagrangian method to fully characterize the solution to max(x,y) u(x, y) s.t. x + py ≤ m, x ≥ 0, y ≥ 0, where m > 0 and p < 1. Evaluate and interpret each of the multipliers in this case. What happens to your solution when p > 1? What about when p =...
1. Suppose the utility function for goods q1 and q2 is given by U(q1,q2) = q1q2...
1. Suppose the utility function for goods q1 and q2 is given by U(q1,q2) = q1q2 + q2 (a) Calculate the uncompensated (Marshallian) demand functions for q1 and q2 (b) Describe how the uncompensated demand curves for q1 and q2 are shifted by changes in income (Y) or the price of the other good. (c) Calculate the expenditure function for q1 and q2 such that minimum expenditure = E(p1,p2, U) (d) Use the expenditure function calculated in part (c) to...
Suppose Anne’s utility function for food (X) and clothing (Y) is given by U (X,Y) =...
Suppose Anne’s utility function for food (X) and clothing (Y) is given by U (X,Y) = 4X1/2 + Y and Anne had budget constraint I = PxX + PyY. a. Find Anne’s optimal bundle if Px = 4 and Py = 4 and Anne has I = 60. b. Discuss how the demand for X depends on her income. c. Suppose now that the price of X increases to 8. Find the SE and IE of the price change.
1. Suppose that Lexi preferences are given by the utility function u(x1; x2) = x12x2, where...
1. Suppose that Lexi preferences are given by the utility function u(x1; x2) = x12x2, where x1 denotes bottles of juice, and x2 denotes the number of meat plates. A meat dish costs $15 on average, and bottle of juice is $3. You are told that at these prices Lexi can afford 10 meat plates and 40 bottles of juice per month. i) Derive Lexi optimal consumption bundle. ii) Which of the following two options would Lexi prefer? Show work....
Suppose the utility function for goods q1 and q2 is given by U(q1,q2)=q1q2 +q2 (a) Calculate...
Suppose the utility function for goods q1 and q2 is given by U(q1,q2)=q1q2 +q2 (a) Calculate the uncompensated (Marshallian) demand functions for q1 and q2 (b) Describe how the uncompensated demand curves for q1 and q2 are shifted by changes in income (Y) or the price of the other good. (c) Calculate the expenditure function for q1 and q2 such that minimum expenditure = E(p1, p2, U) (d) Use the expenditure function calculated in part (c) to compute the compensated...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT