In: Advanced Math
Write a program to compute 2 point Gauss quadrature on a single interval. Your input should be a function with f,a,and b. Verify it by checking that the error in using the rule for f(x)=x^3 - 3x^2 +x - 7 is zero. In matlab please.


%Matlab Code for Gaussian Quadrature integration
clear all
close all
%function for Gaussian Quadrature
f=@(x) x.^3 - 3*x.^2 +x - 7;
%for 2 point Gaussian quadrature N=2
N=2;
%upper and lower limit
a=0; b=1;
%integration using gaussian quadrature 2 point
value=gauss_quad(f,N,a,b);
%exact integration
ext_val=integral(f,a,b);
fprintf('For the function f(x)=')
disp(f)
fprintf('Integration value for a=%f to b=%f using Gaussian
Quadrature is %f\n',a,b,value)
fprintf('Integration value for a=%f to b=%f using exact integration
is %f\n',a,b,ext_val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Function for Gaussian quadrature
function value=gauss_quad(f,N,a,b)
%
% This script is for computing definite integrals using
Legendre-Gauss
% Quadrature. Computes the Legendre-Gauss nodes and weights on an
interval
% [a,b] with truncation order N
%
% Suppose you have a continuous function f(x) which is defined on
[a,b]
% which you can evaluate at any x in [a,b]. Simply evaluate it at
all of
% the values contained in the x vector to obtain a vector f.
    N=N-1;
    N1=N+1; N2=N+2;
xu=linspace(-1,1,N1)';
    % Initial guess
   
y=cos((2*(0:N)'+1)*pi/(2*N+2))+(0.27/N1)*sin(pi*xu*N/N2);
    % Legendre-Gauss Vandermonde Matrix
    L=zeros(N1,N2);
    % Derivative of LGVM
    Lp=zeros(N1,N2);
    % Compute the zeros of the N+1 Legendre
Polynomial
    % using the recursion relation and the
Newton-Raphson method
y0=2;
    % Iterate until new points are uniformly
within epsilon of old points
    while max(abs(y-y0))>eps
        L(:,1)=1;
        Lp(:,1)=0;
        L(:,2)=y;
        Lp(:,2)=1;
        for k=2:N1
           
L(:,k+1)=( (2*k-1)*y.*L(:,k)-(k-1)*L(:,k-1) )/k;
        end
Lp=(N2)*( L(:,N1)-y.*L(:,N2) )./(1-y.^2);
        y0=y;
        y=y0-L(:,N2)./Lp;
end
    % Linear map from[-1,1] to [a,b]
   
xx=(a*(1-y)+b*(1+y))/2;    
    % Compute the weights
    w=(b-a)./((1-y.^2).*Lp.^2)*(N2/N1)^2;
    value = sum(w.*f(xx));
end
%---------------End of Code---------------%