In: Accounting
You have recently been hired as a cost accountant at Travenol Laboratories. The controller is an "old school" accountant and has heard that you recently graduated with a degree in accounting. One day he summons you to his office to assign you a task. He says, "I understand that recently educated accountants are using a variety of statistical tools to determine causality between costs and their respective drivers. We have been using direct labor hours as our cost driver for our manufacturing overhead costs for as long as I have been here. In the last few years our production processes have become more automated and I am not sure whether direct labor hours is the appropriate allocation basis for our manufacturing overhead costs. I would like you to use some of those statistical tools to determine whether there is a more appropriate cost driver."
You leave his office recognizing that this is a tremendous career opportunity. If you can convince your boss that you can use statistical analysis to determine the best cost driver, you will have established yourself in the department as a knowledgeable professional. It is good fortune that one of your projects in your cost class dealt specifically with this type of analysis.
Year | MOH | DLH | DLS | MH | DMS | ||
2000 | 948,768 | 7,595 | 113,932 | 19,650 | 149,712 | ||
2001 | 833,153 | 14,235 | 173,518 | 12,767 | 111,754 | ||
2002 | 753,039 | 14,997 | 184,961 | 12,002 | 126,155 | ||
2003 | 799,757 | 12,901 | 153,511 | 15,420 | 140,550 | ||
2004 | 972,624 | 8,555 | 168,322 | 11,107 | 167,648 | ||
2005 | 967,537 | 10,565 | 198,476 | 13,759 | 143,981 | ||
2006 | 945,057 | 12,878 | 153,169 | 19,230 | 110,323 | ||
2007 | 750,112 | 8,888 | 93,322 | 12,319 | 115,301 | ||
2008 | 884,112 | 11,287 | 169,311 | 13,489 | 158,897 | ||
2009 | 923,244 | 10,127 | 111,900 | 14,603 | 167,418 | ||
2010 | 929,320 | 11,690 | 215,349 | 12,126 | 120,126 | ||
2011 | 785,210 | 7,707 | 75,606 | 11,334 | 121,555 | ||
2012 | 862,449 | 12,182 | 142,734 | 17,987 | 101,168 | ||
2013 | 865,873 | 5,095 | 36,429 | 18,015 | 156,535 | ||
2014 | 804,287 | 11,464 | 211,962 | 15,504 | 152,855 | ||
2015 | 797,726 | 9,989 | 149,840 | 12,472 | 148,269 | ||
MOH=Manufacturing Overhead | MH=Machine Hours | ||||||
DLH=Direct Labor Hours | DM$=Direct Material Dollars | ||||||
DL$=Direct Labor Dollars |
Requirement:
1. Perform a regression on DLH, DL$, MH and DM$ and comment on the following for each; | |||||||
a. The equation | |||||||
b. Goodness of fit | |||||||
c. Significance of independent variables | |||||||
d. Any autocorrelation | |||||||
2. What would you recommend and why? |
Year | MOH | DLH | DLS | MH | DMS | |||||||
2000 | 948,768 | 7,595 | 113,932 | 19,650 | 149,712 | |||||||
2001 | 833,153 | 14,235 | 173,518 | 12,767 | 111,754 | |||||||
2002 | 753,039 | 14,997 | 184,961 | 12,002 | 126,155 | |||||||
2003 | 799,757 | 12,901 | 153,511 | 15,420 | 140,550 | |||||||
2004 | 972,624 | 8,555 | 168,322 | 11,107 | 167,648 | |||||||
2005 | 967,537 | 10,565 | 198,476 | 13,759 | 143,981 | |||||||
2006 | 945,057 | 12,878 | 153,169 | 19,230 | 110,323 | |||||||
2007 | 750,112 | 8,888 | 93,322 | 12,319 | 115,301 | |||||||
2008 | 884,112 | 11,287 | 169,311 | 13,489 | 158,897 | |||||||
2009 | 923,244 | 10,127 | 111,900 | 14,603 | 167,418 | |||||||
2010 | 929,320 | 11,690 | 215,349 | 12,126 | 120,126 | |||||||
2011 | 785,210 | 7,707 | 75,606 | 11,334 | 121,555 | |||||||
2012 | 862,449 | 12,182 | 142,734 | 17,987 | 101,168 | |||||||
2013 | 865,873 | 5,095 | 36,429 | 18,015 | 156,535 | |||||||
2014 | 804,287 | 11,464 | 211,962 | 15,504 | 152,855 | |||||||
2015 | 797,726 | 9,989 | 149,840 | 12,472 | 148,269 | |||||||
MOH=Manufacturing Overhead | MH=Machine Hours | |||||||||||
DLH=Direct Labor Hours | DM$=Direct Material Dollars | |||||||||||
DL$=Direct Labor Dollars | ||||||||||||
Refression on DLH | ||||||||||||
Using Data analysis with regression tool: | ||||||||||||
SUMMARY OUTPUT | ||||||||||||
Regression Statistics | ||||||||||||
Multiple R | 0.193764 | |||||||||||
R Square | 0.037544 | |||||||||||
Adjusted R Square | -0.0312 | |||||||||||
Standard Error | 78215.79 | |||||||||||
Observations | 16 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 3341045092 | 3.34E+09 | 0.546127 | 0.472113755 | |||||||
Residual | 14 | 85647932515 | 6.12E+09 | |||||||||
Total | 15 | 88988977607 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 924361.6 | 84130.142 | 10.98728 | 2.88E-08 | 743920.411 | 1104803 | 743920.4 | 1104803 | ||||
X Variable 1 | -5.6861 | 7.694272289 | -0.739 | 0.472114 | -22.18867014 | 10.81648 | -22.1887 | 10.81648 | ||||
Equation: | ||||||||||||
Y=924361.6-5.6861X | ||||||||||||
Y=MOH | ||||||||||||
X=DLH | ||||||||||||
R squared=Goodness of fit=0.037544 | ||||||||||||
This means only 3.75% of data fits with the regression line | ||||||||||||
Correlation coefficient=Square root of R squared=(0.037544^0.5)= | 0.193764 | |||||||||||
There is very ngligible correlation between MOH and DLH | ||||||||||||
Regression on DL$ | ||||||||||||
SUMMARY OUTPUT | ||||||||||||
Regression Statistics | ||||||||||||
Multiple R | 0.17708 | |||||||||||
R Square | 0.031357 | |||||||||||
Adjusted R Square | -0.03783 | |||||||||||
Standard Error | 78466.79 | |||||||||||
Observations | 16 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 2790455798 | 2.79E+09 | 0.453214 | 0.511773449 | |||||||
Residual | 14 | 86198521809 | 6.16E+09 | |||||||||
Total | 15 | 88988977607 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 823665.3 | 62890.63928 | 13.09679 | 3.02E-09 | 688778.342 | 958552.4 | 688778.3 | 958552.4 | ||||
X Variable 1 | 0.273609 | 0.406423706 | 0.673212 | 0.511773 | -0.598082941 | 1.145301 | -0.59808 | 1.145301 | ||||
Equation: | ||||||||||||
Y=823665.3+0.273609X | ||||||||||||
Y=MOH | ||||||||||||
X=DL$ | ||||||||||||
R squared=Goodness of fit=0.031357 | ||||||||||||
This means only 3.14% of data fits with the regression line | ||||||||||||
Correlation coefficient=Square root of R squared=(0.031357^0.5)= | 0.17708 | |||||||||||
There is very ngligible correlation between MOH and DL$ | ||||||||||||
Regression on MH | ||||||||||||
SUMMARY OUTPUT | ||||||||||||
Regression Statistics | ||||||||||||
Multiple R | 0.318609 | |||||||||||
R Square | 0.101512 | |||||||||||
Adjusted R Square | 0.037334 | |||||||||||
Standard Error | 75571.89 | |||||||||||
Observations | 16 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 9033434358 | 9.03E+09 | 1.58173 | 0.229085936 | |||||||
Residual | 14 | 79955543249 | 5.71E+09 | |||||||||
Total | 15 | 88988977607 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 739301.9 | 100849.6225 | 7.330736 | 3.73E-06 | 523000.9886 | 955602.8 | 523001 | 955602.8 | ||||
X Variable 1 | 8.60041 | 6.838375771 | 1.257668 | 0.229086 | -6.066447643 | 23.26727 | -6.06645 | 23.26727 | ||||
Equation: | ||||||||||||
Y=739301+8.60041X | ||||||||||||
Y=MOH | ||||||||||||
X=MH | ||||||||||||
R squared=Goodness of fit=0.101512 | ||||||||||||
This means only 10.15% of data fits with the regression line | ||||||||||||
Correlation coefficient=Square root of R squared=(0.101512^0.5)= | 0.318609 | |||||||||||
There is some amount of correlation between MOH and MH | ||||||||||||
Regression on DMS | ||||||||||||
SUMMARY OUTPUT | ||||||||||||
Regression Statistics | ||||||||||||
Multiple R | 0.316841 | |||||||||||
R Square | 0.100388 | |||||||||||
Adjusted R Square | 0.03613 | |||||||||||
Standard Error | 75619.12 | |||||||||||
Observations | 16 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 8933452881 | 8.93E+09 | 1.56227 | 0.231824118 | |||||||
Residual | 14 | 80055524726 | 5.72E+09 | |||||||||
Total | 15 | 88988977607 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 709892.4 | 124650.4848 | 5.695063 | 5.53E-05 | 442543.6714 | 977241.1 | 442543.7 | 977241.1 | ||||
X Variable 1 | 1.123956 | 0.899231327 | 1.249908 | 0.231824 | -0.804702967 | 3.052616 | -0.8047 | 3.052616 | ||||
Equation: | ||||||||||||
Y=709892+1.123956X | ||||||||||||
Y=MOH | ||||||||||||
X=DMS | ||||||||||||
R squared=Goodness of fit=0.100388 | ||||||||||||
This means only 10.04% of data fits with the regression line | ||||||||||||
Correlation coefficient=Square root of R squared=(0.100388^0.5)= | 0.316841 | |||||||||||
There is some amount of correlation between MOH and DMS | ||||||||||||
2 | Machine hour has better correlation between with MOH | |||||||||||
Hence, the Manufacturing overhead will be better parameter for charging Manufacturing Overhead under absorbsion costing | ||||||||||||
But, the Correlation is still low. | ||||||||||||
Hence it is recommended that the company use Activity Based Costing system | ||||||||||||