In: Statistics and Probability
X ~ N (60, 9). Suppose that you form random samples of 25 from this distribution. Let X−be the random variable of averages. Let ΣX be the random variable of sums. To make you easy, drawing the graph, shade the region, label and scale the horizontal axis for X− and find the probability.
X−~ N (60, 9/ 25)
9) P (X−< 60) = _____
a. 0.4
b. 0.5
c. 0.6
d. 0.7
10) Find the 30th percentile for the mean.
a. 0.56
b. 59.06
c. 5.96
d. 56.09
11) P (56 < X−< 62) = _____
a. 0.8536
b. 0.5
c. 0.1333
d. 0.56
12) P (18 < X−< 58) = _____
a. 0.8536
b. 0.5
c. 0.1333
d. 0.56
13) Find the minimum value for the upper quartile for the sum.
a. 1530.35
b. 1500
c. 1469.64
d. 66.07
14 ) P (1,400 < Σx < 1,550) = ____
a. 0.8536
b. 0.5
c. 0.1333
d. 0.6877
9) µ = 60, σ = 9, n = 25
P(X̅ < 60) =
= P( (X̅-μ)/(σ/√n) < (60-60)/(9/√25) )
= P(z < 0)
Using excel function:
= NORM.S.DIST(0, 1)
= 0.5
Answer B.
---
10) P(x < a) = 0.3
Z score at p = 0.3 using excel = NORM.S.INV(0.3) = -0.5244
Value of X = µ + z*(σ/√n) = 60 + (-0.5244)*9/√25 = 59.06
Answer B)
---
11) P(56 < X̅ < 62) =
= P( (56-60)/(9/√25) < (X-µ)/(σ/√n) < (62-60)/(9/√25) )
= P(-2.2222 < z < 1.1111)
= P(z < 1.1111) - P(z < -2.2222)
Using excel function:
= NORM.S.DIST(1.1111, 1) - NORM.S.DIST(-2.2222, 1)
= 0.8536
Answer A)
---
12) P(18 < X̅ < 58) =
= P( (18-60)/(9/√25) < (X-µ)/(σ/√n) < (58-60)/(9/√25) )
= P(-23.3333 < z < -1.1111)
= P(z < -1.1111) - P(z < -23.3333)
Using excel function:
= NORM.S.DIST(-1.1111, 1) - NORM.S.DIST(-23.3333, 1)
= 0.1333
Answer C)
----
13) mean = 60*25 = 1500
sd = 9*Sqrt(25) = 45
Distribution of ΣX ~ N(1500, 45)
P(x > a) = 0.75
= 1 - P(x < a) = 0.75
= P(x < a) = 0.25
Z score at p = 0.25 using excel = NORM.S.INV(0.25) = 0.6745
Value of X = µ + z*σ = 1500 + (0.6745)*45 = 1530.35
Answer A)
---
14) P(1400 < X < 1550) =
= P( (1400-1500)/45 < (X-µ)/σ < (1550-1500)/45 )
= P(-2.2222 < z < 1.1111)
= P(z < 1.1111) - P(z < -2.2222)
Using excel function:
= NORM.S.DIST(1.1111, 1) - NORM.S.DIST(-2.2222, 1)
= 0.8536
Answer A.