In: Chemistry
Determine the molar solubility of AgI (Ksp = 8.50e-17) in 2.577 M S2O32- if the complex ion [Ag(S2O3)2]3- forms with a Kf = 2.90e13. Answers 0.09193/ 0.11637/ 0.04516/ or 0.14730
AgI(s) ⇌ Ag⁺(aq) + I⁻(aq)
note that [Ag⁺] = [I⁻]
[Ag⁺][I⁻] = [Ag⁺]² = 8.50X10-17 ⇒ [Ag⁺] =
2.91X10-8⇒ solubility is therefore 2.91 × 10⁻⁸ mol/liter
(quite insoluble)
PART - B
Ag⁺(aq) + 2 (S2O3)⁻2(aq) ⇌ [Ag(S2O3)2]3- . . . ; . . . Kf =
[Ag(S2O3)2]3-/[Ag⁺][S2O3⁻2]² = 2.90 × 1013
But to get the solubility of AgI in this solution, you need the
equilibrium constant for the reaction
AgI(s) + 2 S2O32⁻(aq) ⇌ Ag(S2O3)₂⁻ + I⁻ ; K =
[Ag(S2O3)₂⁻][I⁻]/[S2O32⁻]² = ?
K = [Ag(S2O3)₂⁻][I⁻]/[S2O32⁻]² =
{[Ag(S2O3)3₂⁻]/[Ag⁺][S2O3⁻]²} • {[Ag⁺][I⁻]}
K = Kf × Ksp = 2.90 × 1013 × 2.91X10-8 = 8.45
× 105
Thus,
in 2.577M [Ag(S2O3)2]3-, S2O32- = 2.577 M (initially)
In general, [S2O3⁻2] = 2.577 – 2x
where, in this case, [Ag(S2O3)2]3- = [I⁻] = x, so x² = K × [S203⁻]²
= (4.5 × 10⁴)(2.577– 2x)²
Solve for x ⇒ x = 0.09193/0.11637 = [Ag(S2O3)2]3- = molar
solubility
Basically, this means that AgI will dissolve until almost all the
[S2O3⁻2] ion is used up.