Question

In: Chemistry

Q1) part A: Consider the decomposition of NOCl: 2NOCl(g) → 2NO(g) + Cl2(g) During the decomposition,...

Q1)
part A:
Consider the decomposition of NOCl: 2NOCl(g) → 2NO(g) + Cl2(g)
During the decomposition, the concentration of cyclopropane is measured. By graphing [NOCl] vs. time, ln[NOCl] vs. time and 1/[NOCl] vs. time, the plot of 1/[NOCl] vs. time gives a straight line with a slope of 9.98 x 10-2 at 129oC.
(a) What is the reaction order for the decomposition of NOCl.
(b) Calculate the rate constant of the reaction.
(c) If the initial concentration of NOCl(g) is 0.200 M, calculate half-life of the decomposition reaction.
part B:
The reaction of sucrose with water has a rate constant of 6.21 x 10-5 s-1 at 35oC. Sucrose(aq) + H2O(l) → glucose(aq) + fructose(aq)
(a) What is the reaction order for the reaction? (b) Calculate the half-life of the reaction at 35oC.
(c) How long would it take for the concentration of sucrose to drop to one-quarter of its initial value at 35oC?
(d) At a particular temperature, the half-life of the decomposition of sucrose is 849 s. Determine the rate constant at the particular temperature.

Solutions

Expert Solution


Related Solutions

Question 11 5 pts Nitrosyl chloride, NOCl, decomposes to NO and Cl2. 2NOCl (g) ----> 2NO...
Question 11 5 pts Nitrosyl chloride, NOCl, decomposes to NO and Cl2. 2NOCl (g) ----> 2NO (g) + Cl2 (g) Determine the overall order and rate constant "k" for this reaction from the following data: [NOCl] (M) 0.10 0.20 0.30 Rate (M/h) 8.0 x 10–10 3.2 x 10–9 7.2 x 10–9
For the reaction 2NO(g) + Cl2(g) --->2NOCl(g) if the concentration of NO is tripled, the rate...
For the reaction 2NO(g) + Cl2(g) --->2NOCl(g) if the concentration of NO is tripled, the rate of the reaction increases by a factor of nine. if the concentration of Cl2 is cut in half, the rate of the reaction is decreased to half the original rate. Find the order of reaction for each reactant and write the rate expression for the reaction.
If delta H rxn is -75.2 kJ, 2NO(g) + Cl2 (g) <---> 2NOCl(g)
If delta H rxn is -75.2 kJ, 2NO(g) + Cl2 (g) <---> 2NOCl(g) A scientist places four moles of nitrogen monoxide and two moles of chlorine gas into flask A and the same amounts into Flask B, then allows the systems to reach equilibrium. Flask A is at 25 degrees Celsius and Flask B is at 200 degrees Celsius A) In which flask will the reaction occur faster? Explain. B) In which flask will the reaction occur to a greater...
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]....
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]. The following mechanism is proposed: NO (g) + Cl2 (g) --> NOCl2(g) NOCl2(g) + NO (g) -->2NOCl (g) a) What would the rate law be if the first step was rate determining? b) Based on the observed rate law, what can be concluded about the relative rates of the 2 reactions?
Consider the following equilibrium:           2NOCl(g)  2NO(g) + Cl2(g)with K = 1.6 × 10–5. 1.00 mole of pure...
Consider the following equilibrium:           2NOCl(g)  2NO(g) + Cl2(g)with K = 1.6 × 10–5. 1.00 mole of pure NOCl and 1.50 mole of pure Cl2 are placed in a 1.00-L container. Calculate the equilibrium concentration of NO(g).
At 35 degrees C, Kc = 1.6x10^-5 for the reaction: 2NOCl(g),<--> 2NO(g) + Cl2(g) Calculate the...
At 35 degrees C, Kc = 1.6x10^-5 for the reaction: 2NOCl(g),<--> 2NO(g) + Cl2(g) Calculate the concentrations of all species at equilibrium for each of the following origional mixtures. a. 1.00 mol NOCl in a 1.0 L container b. 1.00 mol NO and 0.50 mol Cl2 in a 1.0 L container c. 1.00 mol NO and 0.75 mol Cl2 in a 1.0 L container The answers are: a. [NOCl]= 1.0M, [NO]= 0.032M, [Cl2]= 0.016M; b. [NOCl]= 1.0M, [NO]= 0.032M, [Cl2]=...
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second...
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second order in NOCl with a rate constant of 5.90×10-4 M-1 s-1. If the initial concentration of NOCl is 8.78×10-2 M, the concentration of NOCl will be 9.48×10-3 M after seconds have passed.
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second...
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second order in NOCl with a rate constant of 5.90×10-4 M-1 s-1. If the initial concentration of NOCl is 3.75×10-2 M, the concentration of NOCl will be 1.05×10-2 M after seconds have passed.
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second...
The gas phase decomposition of nitrosyl chloride at 400 K NOCl(g)NO(g) + ½ Cl2(g) is second order in NOCl with a rate constant of 5.90×10-4 M-1 s-1. If the initial concentration of NOCl is 3.85×10-2 M, the concentration of NOCl will be 8.43×10-3 M after seconds have passed.
The reaction 2NOCl(g)=2NO(g)+Cl2(g) comes to equilibrium at 1 bar total pressure and 227C when the partial...
The reaction 2NOCl(g)=2NO(g)+Cl2(g) comes to equilibrium at 1 bar total pressure and 227C when the partial pressure of the nitrosyl chloride, NOCl, is 0.64 bar. Only NOCl was present initially. (a) Calculate deltarGo for this reaction. (b) At what total pressure will the partial pressure of Cl2 be at 0.1 bar?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT