Question

In: Chemistry

The standard free energy of activation of a reaction A is 75.1 kJ mol–1 (17.9 kcal...

The standard free energy of activation of a reaction A is 75.1 kJ mol–1 (17.9 kcal mol–1) at 298 K. Reaction B is one million times faster than reaction A at the same temperature. The products of each reaction are 10.0 kJ mol–1 (2.39 kcal mol–1) more stable than the reactants. (a) What is the standard free energy of activation of reaction B?

Solutions

Expert Solution

Arrhenius equation gives the relationship between temperature and the rate constant for a reaction obeyed the following equation.

In this equation, k is the rate constant for the reaction, Z is a proportionality constant that varies from one reaction to another, Ea is the activation energy for the reaction, R is the ideal gas constant in joules per mole kelvin, and T is the temperature in kelvin.

where

R is the gas law constant 1.98 x 10-3 kcal/mol
&
T is your 298 Kelvin

Rate of reaction A = 1 = Ze-17.9 kcal/mol/(1.98 x 10-3 kcal/mol x 298 K)

Rate of reaction B = 106 = Ze-G kcal/mol/(1.98 x 10-3 kcal/mol x 298 K)

lowering the activation barrier by delta G,

the rate of the reaction is enhanced
by the factor edG/RT.

106 = edG/(1.98 x 10-3 kcal/mol x 298 K)

ln 106 = dG/(1.98 x 10-3 kcal/mol x 298 K)

13.81 = dG/(1.98 x 10-3 kcal/mol x 298 K)

dG = 13.81 x (1.98 x 10-3 kcal/mol x 298 K)

dG = 8.151 kcal/mol

the standard free energy of activation of reaction B = 17.9 k cal/mol - 8.151 kcal/mol = 9.748 kcal/mol


Related Solutions

The activation energy for a reaction is changed from 184 kJ/mol to 59.3 kJ/mol at 600....
The activation energy for a reaction is changed from 184 kJ/mol to 59.3 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2653 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant and assume the initial concentrations are the same
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C ,...
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C , the rate constant is 0.0120s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B) Given that the initial rate constant is 0.0120s−1 at an initial temperature of 27 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C ,...
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b)Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 100.  ∘C for the same reaction described in Part A?
a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the...
a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the rate constant is 0.0170s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b,Given that the initial rate constant is 0.0170s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C ,...
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B. Given that the initial rate constant is 0.0190s−1 at an initial temperature of 29  ∘C , what would the rate constant be at a temperature of 120.  ∘C for the same reaction described in Part A? Please give the correct units too. Thank you!
A reaction A + B <==> C has a standard free-energy change of -3.27 kJ/mol at...
A reaction A + B <==> C has a standard free-energy change of -3.27 kJ/mol at 25oC What are the concentrations of A, B, and C at equilibrium if at the beginning of the reaction their concentrations are 0.30M, 0.40M and 0M respectively?
What is the standard free energy of the reaction, in kJ, at 298K for: 1 A...
What is the standard free energy of the reaction, in kJ, at 298K for: 1 A (aq) + 1 B (aq) <--> 2 C (aq) + 2 D (aq) if   ΔH° (A)= -3.4134 kJ/mol , ΔH° (B) = 93.8823 kJ/mol, ΔH° (C) = -26.8495 kJ/mol, and ΔH° (D) = -39.4984 kJ/mol ΔS° (A)= 33.3845 J/(mol K) , ΔS° (B) = 92.5722 J/(mol K) , ΔS° (C) = -59.1781 J/(mol K) , and ΔS° (D) = -12.7602 J/(mol K)
The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate...
The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate constant is 0.0130 s−1. At what temperature would this reaction go twice as fast? Express your answer numerically in degrees Celsius
Using the initial rate date to determine the activation energy (in kJ/mol) for the reaction A...
Using the initial rate date to determine the activation energy (in kJ/mol) for the reaction A + B (arrow sign) C: Experiment          Temperature (K)                 Initial A                    Initial B                 Initial Reactive Rate (m/s) 1                                700                                 0.20                         0.10                         1.8 x 10^-5 2                                 700                                 0.40                        0.10                         3.6 x 10^-5 3                                700                                   0.10                       0.20                          3.6 x 10^-5 4                                 600                                  0.50                       0.50                          4.3 x 10^-5 What is the reaction order of HI?____________________ What is the energy for the reaction?_________________ kJ/mole (2 significant figures) What is the value of...
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C...
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B: Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 130.  ∘C for the same reaction described in Part A? Express your...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT