Question

In: Physics

A roller-coaster car is starting from rest from the top of the slope of height H....

A roller-coaster car is starting from rest from the top of the slope of height H. As it reaches the bottom of the slope, it is moving at 30 m/s along a straight horizontal track. Using the principle of conservation of energy,

a. Calculate the height H.

b. Calculate the speed of the roller-coaster car after climbing the 10 m hill shown in the figure. Ignore friction.

c. What is the change in kinetic energy as the car goes a. Downhill and b. Uphill

d. What is the change in gravitational potential energy as the car goes a. Downhill and b. Uphill

Solutions

Expert Solution

Dear Student,

As mass of roller-coaster car is not given in the question, I assumed mass to be 'm'.

So the answer of part (c) and (d) contains the variable 'm'. So, don't interpret it as meter that 'm' sign in answer indicates mass of the roller-coaster car.

If you have data of mass kindly put it in final expressions to get a net numeric result.

Hope it helps.

Thanks.


Related Solutions

A cart starts from rest at the top of a roller coaster that is 40 meters...
A cart starts from rest at the top of a roller coaster that is 40 meters high. It descends down the first hill all the way to ground level before heading into a vertical circular loop with diameter 20 meters. What is the minimal H(height of the initial hill) needed in order for the cart to just barely make it over the top of the loop?
A 300kg roller coaster at an amusement park is at rest on top of a 30m...
A 300kg roller coaster at an amusement park is at rest on top of a 30m hill (Point A). The car starts to roll down the hill and reaches point B, which is 10m above the ground, and then rolls up the track to point C, which is 20m above the ground. a) Assuming no energy is lost and using energy arguments, how fast is the cart moving at point C? b) What is the total mechanical energy of the...
A roller coaster car with a mass 700 Kilograms starts from rest at h1 above the...
A roller coaster car with a mass 700 Kilograms starts from rest at h1 above the ground and slides along a track. The car encounters a loop of radius 12 m. The bottom of the loop is a height h2 = 5 m from the ground. What would be the max height of release h1 for the roller coaster car if the amount of thermal energy produced between the point of release and the top of the loop should not...
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h...
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h . It then descends the hill, which is at an average angle of 35 ∘ and is 45.0 m long. Q: What will its speed be when it reaches the bottom? Assume μk = 0.18.
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h....
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h. It then descends the hill, which is at an average angle of 35° and is 56.0 m long. What will its speed be when it reaches the bottom? Assume µk = 0.16.
A roller coaster starts from rest at A, rolls down the track to B, describes a...
A roller coaster starts from rest at A, rolls down the track to B, describes a circular loop of 12-m diameter, and travels up and down past point E. Assume that there is no energy loss due to friction. Given: h = 20 m. Shoe the free body diagrams at points B,D, and E. Determine the force exerted by his seat by a 80 kg rider at B and D and the minimum value of the radius of curvature at...
A roller-coaster track is being designed so that the roller-coaster car can safely make it around...
A roller-coaster track is being designed so that the roller-coaster car can safely make it around the circular vertical loop of radius R = 24.5 m on the frictionless track. The loop is immediately after the highest point in the track, which is a height h above the bottom of the loop. What is the minimum value of h for which the roller-coaster car will barely make it around the vertical loop?
A roller coaster car has a mass of 250 Kg. The car is towed to the...
A roller coaster car has a mass of 250 Kg. The car is towed to the top of a 30 m hill where it is released from rest and allowed to roll.   The car plunges down the hill, then up an 8 m hill and through a loop with a radius of 8 m. Assuming no friction: (8 points) What is the potential energy of the car at the top of the 30 m hill? What are the Kinetic Energy...
1) A roller coaster car on the leveled portion of a track is moving at a...
1) A roller coaster car on the leveled portion of a track is moving at a speed of 35 m/s, heading toward a hump. Based on the principle of conservation of energy, predict what is the velocity of the car on the top of the hump if the lost of energy due to friction and air resistance is negligiable. The highest point of the hump is 14 above the leveled track.
1. If a roller coaster has a total of 6396 Joules of energy at the top...
1. If a roller coaster has a total of 6396 Joules of energy at the top of a hill, then at the bottom of the hill how much total energy will it have. (assume: no brakes, no motor, no air resistance, no external forces) Hint: use conservation of energy! Question 2 If a roller coaster begins at rest at the top of a 20 meter hill, then at the bottom of the hill how fast will it be going? Hint:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT