Question

In: Physics

A figure skater presses off the ice to begin spinning with her arms close to her...

A figure skater presses off the ice to begin spinning with her arms close to her body. After completing 2 turns in 0.8 seconds she moves her arms further away from her body, what will her new angular velocity be?
       
a. <16.6 rad/s
       
B. 18 rad/s
       
C. 20 rad/s
       
D. 24 rad/s

Solutions

Expert Solution

The skater turned 2 turns in 0.8 seconds

2 turns means 2* = radians.

So, the angular velocity initially is

Now, the angular momentum is given by

Where r is the radius of rotation.

When the person stretches the arms out, the radius r changes.

But according to the law of conservation of angular momentum,

L will remain the same.

So, the new angular velocity will be

Since r2 > r1

The new angular frequency will be less than 15.7 rad/s

So, option A is correct

Note: There must be some error is the values provided. The answer a should have been <15.7 exactly or the value of time is different. However, the steps and the answer remains the same


Related Solutions

A figure skater is spinning slowly with arms outstretched. He brings his arms in close to...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to his body and his angular velocity changes by a factor of 4. By what factor does his moment of inertia change, and why?
[15 pts] A figure skater is spinning in place with her arms outstretched at an angular...
[15 pts] A figure skater is spinning in place with her arms outstretched at an angular speed of 18.0 rad/s. She then raises her arms straight up to increase her angular speed. Her body has a mass of 58.0 kg and can be treated as a solid cylinder with a diameter of 36.0 cm, while each arm has a mass of 3.5 kg and can be treated as a thin rod of length 0.425 m when outstretched, and a hollow...
What happens when a spinning ice skater draws in her outstretched arms? (a) her angular momentum...
What happens when a spinning ice skater draws in her outstretched arms? (a) her angular momentum decreases (b) her angular momentum increases (c) her rotational speed decreases (d) her rotational speed increases
A: What is the angular momentum of a figure skater spinning at 3.4 rev/s with arms...
A: What is the angular momentum of a figure skater spinning at 3.4 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.4 m , a radius of 15 cm , and a mass of 48 kg ? **Express your answer using three significant figures and include the appropriate units B: How much torque is required to slow her to a stop in 4.5 s , assuming she does not...
Conservation of Angular Momentum A female figure skater is spinning on ice. Assume that that the...
Conservation of Angular Momentum A female figure skater is spinning on ice. Assume that that the surface is basically frictionless. The skater is wearing weighted bracelets as part of the costume for the performance. These weighted bracelets weight .75 kg each. The skater has a spinning routine in the middle of the performance and initially starts spinning with arms stretched wide such that the weighted bracelets are 1 m from the axis of rotation. She has an initial angular velocity...
A 45 kg figure skater is spinning on the toes of her skates at 1.0 rev/s...
A 45 kg figure skater is spinning on the toes of her skates at 1.0 rev/s . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 kg , 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 69 cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to...
A 45 kg figure skater is spinning on the toes of her skates at 0.50 rev/s...
A 45 kg figure skater is spinning on the toes of her skates at 0.50 rev/s . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 kg , 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 62 cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to...
Problem 12.82 A 45kg figure skater is spinning on the toes of her skates at 1.1rev/s...
Problem 12.82 A 45kg figure skater is spinning on the toes of her skates at 1.1rev/s . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40kg , 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kgeach, 71cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a 45...
An ice skater has a moment of inertia of 5.0 kg•m2 when her arms are outstretched....
An ice skater has a moment of inertia of 5.0 kg•m2 when her arms are outstretched. If she pulls in her arms and decreases her moment of inertia to 2.0 kg•m2, she will be spinning at 7.5 rps. How fast is she spinning initially? Report your answer in revolutions per second (rps).
The outstretched hands and arms of a figure skater preparing for a spin can be considered...
The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center. When the skater's hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass of 7.5 kg. When outstretched, they span 1.8 m; when wrapped, they form a cylinder of radius...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT