Question

In: Advanced Math

Use the simplex method to answer the following problem. Include all tableaus. Delvecchio's pizza shop makes...

Use the simplex method to answer the following problem. Include all tableaus.

Delvecchio's pizza shop makes three specialty pizzas, the Mighty Meaty, the Very Veggie, and Super Cheesy. The Mighty Meaty is topped with 5 different meat toppings and 2 different cheeses. The Very Veggie has 6 different vegetable toppings and 4 different cheeses. The Super Cheesy has 6 different cheeses. The cost of t he meat toppings for each Mighty Meaty is $3, and the cost of the vegetable toppings is $2 fo r each Very Veggie. No more than $60 per day can be spent on these toppings. The cheese use d for the Mighty Meaty is $2 per pizza, the cheese for the Very Veggie is $4 per pizza, and the cheese for the Super Cheesy is $6 per pizza. No more than $480 per day can be spent on cheese. N o more than 80 pizzas can be made per day due to manpower and bake time. How many pizzas of each type should Delvecchio's pizza shop make in order to maximize revenue if the Might y Meaty sells for $15, the Very Veggie sells for $12, and the Super Cheesy sells for $12?

Solutions

Expert Solution


Related Solutions

Use the simplex method to solve the following problem. Find y1 ≥ ​0, y2 ≥ ​0,...
Use the simplex method to solve the following problem. Find y1 ≥ ​0, y2 ≥ ​0, and y3 ≥ 0 such that 2 y1 + 7 y2 + 3 y3 ≤ 11​, 2 y1 + 14 y2 + 8 y3 ≥ 1010​, and w = 12 y1 + 42 y2 + 59 y3 is minimized. The minimum value w = ___ occurs when y1 = ___​, y2 = ___​, and y3 = ___. ​(Simplify your​ answers.)
Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps,...
Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. An investor has up to N$450,000 to invest in three types of investments. Type A pays 6% annually and has a risk factor of 0. Type B pays 10% annually and has a risk factor of 0.06. Type C pays 12% annually and has a risk factor of...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. 2.2.1 An electronics manufacturing company has three production plants, each of which produces three different...
Solve the following problem using the simplex method. If the problem is two dimensional, graph the...
Solve the following problem using the simplex method. If the problem is two dimensional, graph the feasible region, and outline the progress of the algorithm. Max               Z = 5X1 + 3X2 + 2X3 Subject to    4X1 + 5X2 + 2X3 + X4≤ 20                      3X1 + 4X2 - X3 + X4≤ 30                       X1, X2, X3, X4 ≥ 0   
For the following Linear Programming problem, use the Simplex Approach to construct the starting simplex tableau:...
For the following Linear Programming problem, use the Simplex Approach to construct the starting simplex tableau: Maximize ???? = P = 4 X + 5 Y Subjected to: 3 X + 5 Y ≤ 20 X + Y ≤ 6 X, Y ≥ 0 Then apply Gauss-Jordan computations to determine the new basic solution and find the Optimum Solution?
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1=...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1= ___ and x2=___ a.) Maximize : z= 24x1+2x2 Subject to: 6x1+3x2<=10, x1+4x2<=3 With: x1>=0, x2>=0 b.) Maximize: z=2x1+7x2 Subject to: 5x1+x2<=70, 7x1+2x2<=90, x1+x2<=80 With: x1,x2>=0 c.) Maximize: z=x1+2x2+x3+5x4 Subject to: x1+3x2+x3+x4<=55, 4x+x2+3x3+x4<=109 With: x1>=0, x2>- 0, x3>=0, x4>=0 d.) Maximize: z=4x1+7x2 Subject to: x1-4x2<=35 , 4x1-3x2<=21 With: x1>=0, x2>=0
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 21 3x + 2y + 4z ≤ 36 2x + 5y − 2z ≤ 15 x ≥ 0, y ≥ 0, z ≥ 0
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 56 3x + 2y + 4z ≤ 96 2x + 5y − 2z ≤ 40 x ≥ 0, y ≥ 0, z ≥ 0   The maximum is P =  at (x, y, z) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT