Question

In: Economics

Imagine you consume two goods, X and Y, and your utility function is U = XY....

Imagine you consume two goods, X and Y, and your utility function is U = XY. Your budget is $100, the price of Good X is $4, and the price of Good Y is $25. So, the optimal bundle for you to consume is (12.5, 2). Now the price of good X increases to $10. The compensated price bundle is (7.91, 3.16). What is the income effect on X?

Solutions

Expert Solution

Substitution effect on X, SE = 7.91 - 12.5 = -4.59

We find the X after increase in price.
Px' = 10; Py = 25; M = 100

Utility is maximized where MRS = Px'/Py = 10/25 = 0.4
MRS = MUX/MUY = (∂U/∂X)/(∂U/dY) = Y/X
So, Y/X = 0.4
So, Y = 0.4X

Budget line: Px'X + PyY = M
So, 10X + 25(0.4X) = 10X + 10X = 20X = 100
So, X' = 100/20 = 5

TE on X = X' - initial X = 5 - 12.5 = -7.5

Income effect, IE = TE - SE = -7.5 - (-4.59) = -7.5 + 4.59 = -2.91

So, income effect on X is -2.91


Related Solutions

Imagine you consume two goods, X and Y, and your utility function is U = X1/2Y1/4....
Imagine you consume two goods, X and Y, and your utility function is U = X1/2Y1/4. Your budget is M = 630; PX = $10; PY = $30. Now imagine PX increases to $25. The compensated price bundle is (30.9458, 12.8941). What is the income effect on X?
Imagine you consume two goods, X and Y, and your utility function is U = X1/2Y1/4....
Imagine you consume two goods, X and Y, and your utility function is U = X1/2Y1/4. Your budget is M = 630; PX = $10; PY = $30. Now imagine PX increases to $25. The compensated price bundle is (30.9458, 12.8941). What is the income effect on X?
1. Imagine you consume two goods, K and L, and your utility function is U =...
1. Imagine you consume two goods, K and L, and your utility function is U = K1/3L2/3. Your budget is $120; PK = $6; PL = $9. So, the optimal bundle for you to consume is (K = 6.6667, L = 8.8889). Now, suppose the price of good K increases to $9. What is the new optimal K for you to consume? 2. Imagine you consume two goods, K and L, and your utility function is U = K1/3L2/3. Your...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,      MUX=Y      MUY=X+1 a. What is Esther's MRSXY? Y/(X + 1) X/Y (X + 1)/Y X/(Y + 1) b. Suppose her daily income is $20, the price of X is $4 per unit, and the price of Y is $1 per unit. What is her best choice?      Instructions: Enter your answers as whole numbers.      X =      Y =      What is Esther's utility when her...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy + 2,000. Tammy’s utility function is U(x, y) = xy(1 - xy). Oral’s utility function is -1/(10 + xy. Billy’s utility function is U(x, y) = x/y. Pat’s utility function is U(x, y) = -xy. a. No two of these people have the same preferences. b. They all have the same preferences except for Billy. c. Jim, Jerry, and Pat all have the same...
A consumes two goods, x and y. A ’s utility function is given by u(x, y)...
A consumes two goods, x and y. A ’s utility function is given by u(x, y) = x 1/2y 1/2 The price of x is p and the price of y is 1. A has an income of M. (a) Derive A ’s demand functions for x and y. (b) Suppose M = 72 and p falls from 9 to 4. Calculate the income and substitution effects of the price change. (c) Calculate the compensating variation of the price change....
An individual likes to consume 2 goods X and Y . The utility function for this...
An individual likes to consume 2 goods X and Y . The utility function for this individual is U = X+0.5Y . What is the marginal utility of X and Y ? The individual has an income of $90. The price of X is $10 and the price of Y is $5. What is the optimal consumption bundle of this individual? Graph the individuals optimal bundle with the budget line and indierence curve. (answer: Infinitely many solutions). Do the same...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x)...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x) + 3y. For this utility function MUx =1/x and MUy = 3. The price of x is px = 4 and the price of y is py = 2. The consumer has M units of income to spend on the two goods and wishes to maximize utility, given the budget. Draw the budget line for this consumer when M=50 and the budget line when...
Suppose that a consumer’s utility function is U(x, y) = xy . The marginal utilities for...
Suppose that a consumer’s utility function is U(x, y) = xy . The marginal utilities for this utility function are MUx= y and MUy= x. The price of y is Py = 1. The price of x is originally Px = 9 and it then falls to Px = 4. The consumer’s income is  I = 72. (15 points) What x-y combination (xA*, yA*) maximizes utility in the original situation where Px = 9? Why? (15 points) What x-y combination (xC*,...
Assume you have the utility function U( X; Y ) = XY: You have 20 liras...
Assume you have the utility function U( X; Y ) = XY: You have 20 liras to spend. Price of good X is a lira per unit and price of good Y is a lira per unit. Given this information, you can solve for optimal consumption bundle and conclude that consuming 10 units of X and 10 units of Y maximizes your utility. Now assume that price of X increases to 2 liras. Price of good Y is constant and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT