Question

In: Statistics and Probability

Suppose that IQ is normally distributed with mean of 100 and standard deviation of 10. Compute...

Suppose that IQ is normally distributed with mean of 100 and standard deviation of 10. Compute the following:

  1. What is the probability that a randomly selected individual has IQ greater than 115? (2 pts)
  2. What is the probability that a randomly selected individual has IQ between 90 and 100? (3 pts)

Solutions

Expert Solution

Let define a random variable X that represent lQ of individuals.

The random variable X is normally distributed with mean 100 and standard deviation 10.

(a) What is the probability that a randomly selected individual has IQ greater than 115?

Solution::

We need to find P(X>115)

The probability is 0.0668

(b)What is the probability that a randomly selected individual has IQ between 90 and 100?

Solution::

We need to find P(90<X<100)

The probability is 0.3413


Related Solutions

IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Find the probability that the person has an IQ less than 110. Include a sketch of the graph and shade the area to be determined.
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Let X = IQ of an individual. a. X ~ _____(_____,_____) b. Find the probability that the person has an IQ greater than 120. A. 0.05            B. 0.08           C. 0.09           D. 0.06           E. 0.07 c. Find the probability that the person has an IQ between 90 and 115. A. 0.589            B. 0.664           C. 0.732           D. 0.531           E. 0.469 d. Find the 60th percentile A. 98.6              B. 100.0             C. 103.8            D....
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Let X = IQ of an individual. Part B Find the probability that the person has an IQ greater than 110. What is the probability? (Round your answer to four decimal places.) Part C The middle 60% of IQs fall between what two values? State the two values. (Round your answers to the nearest whole number.) What is the...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose an individual is randomly chosen. a) Find the probability that the person has an IQ greater than 125. b) Find the probability that the person has an IQ score between 105 and 118. c) What is the IQ score of a person whose percentile rank is at the 75th percentile, ?75? d) Use the information from part (c) to fill in the blanks and...
Suppose IQ scores are approximately normally distributed with a mean of 100 and a standard deviation...
Suppose IQ scores are approximately normally distributed with a mean of 100 and a standard deviation of 15. Answer the following questions. Question 1 What percent of the population has an IQ that is above average? Question 2 What percent of the population has an IQ below 110? What is the calculated z-score? What is the percentage? Question 3 What percent of the individuals in the population have an IQ above 130? (Individuals in this category are sometimes classified as...
Suppose IQ scores are approximately normally distributed with a mean of 100 and a standard deviation...
Suppose IQ scores are approximately normally distributed with a mean of 100 and a standard deviation of 15. Answer the following questions. Question 1 What percent of the population has an IQ that is above average? Question 2 What percent of the population has an IQ below 110? What is the calculated z-score? What is the percentage? Question 3 What percent of the individuals in the population have an IQ above 130? (Individuals in this category are sometimes classified as...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a)...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a) Suppose one individual is randomly chosen. Find the probability that this person has an IQ greater than 95. Write your answer in percent form. Round to the nearest tenth of a percent. P (IQ greater than 95) = % b) Suppose one individual is randomly chosen. Find the probability that this person has an IQ less than 125. Write your answer in percent form....
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a)...
IQ is normally distributed with a mean of 100 and a standard deviation of 15. a) Suppose one individual is randomly chosen. Find the probability that this person has an IQ greater than 95. Write your answer in percent form. Round to the nearest tenth of a percent. P P (IQ greater than 95) = % b) Suppose one individual is randomly chosen. Find the probability that this person has an IQ less than 125. Write your answer in percent...
. IQ is normally distributed with a mean of 100 and a standard deviation of 15....
. IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose an individual is randomly chosen. a) (3pt) Find the probability that the person has an IQ greater than 125. b) (4pt) Find the probability that the person has an IQ score between 105 and 118. c) (4pt) What is the IQ score of a person whose percentile rank is at the 75th percentile, ?75? d) (3pt) Use the information from part (c) to...
IQ test scores are normally distributed with a mean of 100 and a standard deviation of...
IQ test scores are normally distributed with a mean of 100 and a standard deviation of 15. An individual's IQ score is found to be 123. A.What percentage of individuals will score above 123? B.What percentage of individuals will score below 123? c. What percentage of individuals will score between 123 and 100? d. This individual was trying to be in the 80th percentile; did they achieve this? how can you tell? e. what can we say about someone with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT