Question

In: Economics

If the errors in the classical linear regression model are NOT normally distributed is the OLS...

If the errors in the classical linear regression model are NOT normally distributed is the OLS estimator still "BLUE"? Please explain why, or why not.

Solutions

Expert Solution

the answer is true. The assumption of normally distributed errors in the classical linear regression model is required for hypothesis testing and producing reliable confidence intervals and prediction intervals. A violation of this assumption does not lead to biased estimates or an increase in the variance and thus the OLS estimates remain the best linear unbiased estimators (BLUE)


Related Solutions

Discuss the main assumptions of a classical linear regression model.
Discuss the main assumptions of a classical linear regression model.
The classical linear regression model in econometrics is the equivalent of the model of perfect competition...
The classical linear regression model in econometrics is the equivalent of the model of perfect competition in price theory- Explain
Using the OLS estimator:  βOLS = (X'X)-1X'y to find the estimator for the simple linear regression model:...
Using the OLS estimator:  βOLS = (X'X)-1X'y to find the estimator for the simple linear regression model: y = β1 + β2x +u from a set of data on (x, y).
5. Under the Classical Linear Regression model assumptions, which one of the following is not a...
5. Under the Classical Linear Regression model assumptions, which one of the following is not a required assumption about the error term ui? * a. There is no multicollinearity in the model b. The variance of the error term is the same for all values of x. c. The values of the error term are independent. d. The error term is normally distributed. 6 If you find a positive value of the correlation coefficient it implies that the slope of...
what are the assumption of classical linear regression model? Are these assumption useful for identifying characteristics...
what are the assumption of classical linear regression model? Are these assumption useful for identifying characteristics of OLS
Linear regression Hello What does it mean that the residuals in linear regression is normal distributed?...
Linear regression Hello What does it mean that the residuals in linear regression is normal distributed? Why is it only the residuals that is, and not the "raw" data? And why do we want our residuals to be normal?
When we estimate a linear multiple regression model (including a linear simple regression model), it appears...
When we estimate a linear multiple regression model (including a linear simple regression model), it appears that the calculation of the coefficient of determination, R2, for this model can be accomplished by using the squared sample correlation coefficient between the original values and the predicted values of the dependent variable of this model. Is this statement true? If yes, why? If not, why not? Please use either matrix algebra or algebra to support your reasoning.
a) What is the primary difference between the dependent variable of an OLS regression model and...
a) What is the primary difference between the dependent variable of an OLS regression model and a logit model? b) What is the primary difference between the model results of an OLS regression model and a logit model?
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary...
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.                                                           Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.                                                           
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT