In: Finance
Bond J is a 3 percent coupon bond. Bond K is a 12 percent coupon bond. Both bonds have 9 years to maturity, make semiannual payments, and have a YTM of 8 percent. If interest rates suddenly rise by 2 percent, what is the percentage price change of these bonds? What if rates suddenly fall by 2 percent instead?
Bong J:
Semi Annual Coupon = 1000*3%/2 = $15
8% | 10% | 6% | |||||
Period | Cash Flow |
Discounting Factor [1/(1.04^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
Discounting Factor [1/(1.05^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
Discounting Factor [1/(1.03^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
1 | 15 | 0.961538462 | 14.42307692 | 0.952380952 | 14.28571429 | 0.970873786 | 14.5631068 |
2 | 15 | 0.924556213 | 13.8683432 | 0.907029478 | 13.60544218 | 0.942595909 | 14.13893864 |
3 | 15 | 0.888996359 | 13.33494538 | 0.863837599 | 12.95756398 | 0.915141659 | 13.72712489 |
4 | 15 | 0.854804191 | 12.82206287 | 0.822702475 | 12.34053712 | 0.888487048 | 13.32730572 |
5 | 15 | 0.821927107 | 12.3289066 | 0.783526166 | 11.7528925 | 0.862608784 | 12.93913177 |
6 | 15 | 0.790314526 | 11.85471789 | 0.746215397 | 11.19323095 | 0.837484257 | 12.56226385 |
7 | 15 | 0.759917813 | 11.3987672 | 0.71068133 | 10.66021995 | 0.813091511 | 12.19637267 |
8 | 15 | 0.730690205 | 10.96035308 | 0.676839362 | 10.15259043 | 0.789409234 | 11.84113851 |
9 | 15 | 0.702586736 | 10.53880103 | 0.644608916 | 9.669133743 | 0.766416732 | 11.49625099 |
10 | 15 | 0.675564169 | 10.13346253 | 0.613913254 | 9.208698803 | 0.744093915 | 11.16140872 |
11 | 15 | 0.649580932 | 9.743713973 | 0.584679289 | 8.770189336 | 0.722421277 | 10.83631915 |
12 | 15 | 0.62459705 | 9.368955744 | 0.556837418 | 8.352561273 | 0.70137988 | 10.5206982 |
13 | 15 | 0.600574086 | 9.008611292 | 0.530321351 | 7.95482026 | 0.68095134 | 10.2142701 |
14 | 15 | 0.577475083 | 8.662126242 | 0.505067953 | 7.576019295 | 0.661117806 | 9.916767087 |
15 | 15 | 0.555264503 | 8.328967541 | 0.481017098 | 7.215256471 | 0.641861947 | 9.627929211 |
16 | 15 | 0.533908176 | 8.008622635 | 0.458111522 | 6.87167283 | 0.623166939 | 9.347504088 |
17 | 15 | 0.513373246 | 7.700598688 | 0.436296688 | 6.544450314 | 0.605016446 | 9.075246688 |
18 | 15 | 0.493628121 | 7.404421815 | 0.415520655 | 6.232809823 | 0.587394608 | 8.810919114 |
18 | 1000 | 0.493628121 | 493.628121 | 0.415520655 | 415.5206549 | 0.587394608 | 587.3946076 |
Price of the
Bond = Sum of PVs |
683.5175756 | Price of the Bond
= Sum of PVs |
590.8644584 | Price of the Bond
= Sum of PVs |
793.6973038 | ||
% Change
= [(590.86-683.52)/683.52] |
-0.135553379 = -13.5553% | % Change
= [(793.697-683.52)/683.52] |
0.161195165 = 16.1195% |
Bond K:
Semi Anual Coupon = 1000*12%/2 = $60
8% | 10% | 6% | |||||
Period | Cash Flow |
Discounting Factor [1/(1.04^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
Discounting Factor [1/(1.05^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
Discounting Factor [1/(1.03^year)] |
PV of
Cash Flows (cash flows*discounting factor) |
1 | 60 | 0.961538462 | 57.69230769 | 0.952380952 | 57.14285714 | 0.970873786 | 58.25242718 |
2 | 60 | 0.924556213 | 55.47337278 | 0.907029478 | 54.42176871 | 0.942595909 | 56.55575455 |
3 | 60 | 0.888996359 | 53.33978152 | 0.863837599 | 51.83025591 | 0.915141659 | 54.90849956 |
4 | 60 | 0.854804191 | 51.28825146 | 0.822702475 | 49.36214849 | 0.888487048 | 53.30922287 |
5 | 60 | 0.821927107 | 49.31562641 | 0.783526166 | 47.01156999 | 0.862608784 | 51.75652706 |
6 | 60 | 0.790314526 | 47.41887154 | 0.746215397 | 44.7729238 | 0.837484257 | 50.2490554 |
7 | 60 | 0.759917813 | 45.59506879 | 0.71068133 | 42.64087981 | 0.813091511 | 48.78549068 |
8 | 60 | 0.730690205 | 43.8414123 | 0.676839362 | 40.61036172 | 0.789409234 | 47.36455406 |
9 | 60 | 0.702586736 | 42.15520413 | 0.644608916 | 38.67653497 | 0.766416732 | 45.98500394 |
10 | 60 | 0.675564169 | 40.53385013 | 0.613913254 | 36.83479521 | 0.744093915 | 44.64563489 |
11 | 60 | 0.649580932 | 38.97485589 | 0.584679289 | 35.08075735 | 0.722421277 | 43.3452766 |
12 | 60 | 0.62459705 | 37.47582297 | 0.556837418 | 33.41024509 | 0.70137988 | 42.08279281 |
13 | 60 | 0.600574086 | 36.03444517 | 0.530321351 | 31.81928104 | 0.68095134 | 40.8570804 |
14 | 60 | 0.577475083 | 34.64850497 | 0.505067953 | 30.30407718 | 0.661117806 | 39.66706835 |
15 | 60 | 0.555264503 | 33.31587016 | 0.481017098 | 28.86102589 | 0.641861947 | 38.51171684 |
16 | 60 | 0.533908176 | 32.03449054 | 0.458111522 | 27.48669132 | 0.623166939 | 37.39001635 |
17 | 60 | 0.513373246 | 30.80239475 | 0.436296688 | 26.17780126 | 0.605016446 | 36.30098675 |
18 | 60 | 0.493628121 | 29.61768726 | 0.415520655 | 24.93123929 | 0.587394608 | 35.24367646 |
18 | 1000 | 0.493628121 | 493.628121 | 0.415520655 | 415.5206549 | 0.587394608 | 587.3946076 |
Price of the
Bond = Sum of PVs |
1253.185939 | Price of the Bond
= Sum of PVs |
1116.895869 | Price of the Bond
= Sum of PVs |
1412.605392 | ||
% Change
= [(1116.896-1253.186)/1253.186] |
-0.108754867 = -10.8755% | % Change
= [(1412.605-1253.186)/1253.186] |
0.127211332 = 12.7211% |