Question

In: Chemistry

Under certain circumstances, carbon dioxide, CO2(g), can be made to react with hydrogen gas, H2(g), to...

Under certain circumstances, carbon dioxide, CO2(g), can be made to react with hydrogen gas, H2(g), to produce methane, CH4(g), and water vapor, H2O(g): CO2(g)+4H2(g)→CH4(g)+2H2O(g)

Part A How many moles of methane are produced when 36.6 moles of carbon dioxide gas react with excess hydrogen gas? Express your answer with the appropriate units.

Part B How many moles of hydrogen gas would be needed to react with excess carbon dioxide to produce 53.6 moles of water vapor? Express your answer with the appropriate units.

Solutions

Expert Solution

a)     CO2(g) +      4H2(g) →    CH4(g) +    2H2O(g)

       1 mol                                  1 mol

      36.6 mol                                ? = 36.6 mol

Therefore,

36.6 moles of methane are produced when 36.6 moles of carbon dioxide gas react with excess hydrogen gas.

b) CO2(g) +      4H2(g) →    CH4(g) +    2H2O(g)

                      4 mol                              2 mol

                      ?                                   53.6 mol

                       ? = 4 mol H2 x (53.6 mol water/ 2 mol water)

                        = 107.2 mol H2

Therefore,

107.2 moles of hydrogen gas would be needed to react with excess carbon dioxide to produce 53.6 moles of water vapor.


Related Solutions

Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is Kp=1.60×10−3If a 1.55-L reaction vessel initially contains 143 mbar of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium.
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is Kp=1.60×10−3. . If a 1.55-L reaction vessel initially contains 153 torr of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium. mH2/mH2+mCO+mH2O =
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is Kp=1.60×10−3. If a 1.55-L reaction vessel initially contains 247 torr of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium.
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is K p =1.60× 10 −3 . If a 1.55- L reaction vessel initially contains 157 torr of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium.
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is 1.6×10−3 Kp . Part A If a 1.55-LL reaction vessel initially contains 140 torr of water at 700.0 KK in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium. mH2mH2+mCO+mH2OmH2mH2+mCO+mH2O = %
URGENT!! Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas....
URGENT!! Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is Kp=1.60×10−3. Part A If a 1.55-L reaction vessel initially contains 121 mbar of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium. I've tried 4 times, I keep getting it wrong. Please show me how to do it!...
Consider this reaction between solid carbon and carbon dioxide gas. C(s) + CO2(g) ⇌ 2 CO(g);...
Consider this reaction between solid carbon and carbon dioxide gas. C(s) + CO2(g) ⇌ 2 CO(g); ΔH = +172.5 kJ/mol Please explain the following: When chemical systems are subjected to stresses, the equilibrium position may shift toward the reactants or products, or it may be unaffected. How would each of the following changes affect this equilibrium? 1. decreasing the temp 2. increasing the CO2 3. increasing the volume of the container 4. adding C 5. adding a catlyst Options: Would...
1. Methanol (CH4O) can be made by a reaction between carbon monoxide gas and hydrogen gas....
1. Methanol (CH4O) can be made by a reaction between carbon monoxide gas and hydrogen gas. Methanol is the only product of the reaction. a) Starting with 75.0 g of each reactant, calculate the theoretical yield of methanol. b) How many grams of the excess reactant remains when the reaction is over? 2. Silver(I) chloride is insoluble in water. A chemist wishes to prepare 28.7 g of silver(I) chloride by mixing together aqueous solutions of 0.400 M silver(I) nitrate and...
Gaseous ethane CH3CH3 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and...
Gaseous ethane CH3CH3 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and gaseous water H2O . Suppose 14. g of ethane is mixed with 37.6 g of oxygen. Calculate the minimum mass of ethane that could be left over by the chemical reaction.
Gaseous methane CH4 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and...
Gaseous methane CH4 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and gaseous water H2O. Suppose 0.32 g of methane is mixed with 0.909 g of oxygen. Calculate the maximum mass of water that could be produced by the chemical reaction.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT