In: Finance
A ten-year bond with a face value of $5,000 pays a dividend of
$250 every six months.
Calculate the bond interest rate. If the bond is purchased for
$3,994.25 at the end of
year one, what is the effective annual interest rate? What is the
nominal annual interest
rate?
Annual bond interest rate = (Dividend Payments*2)/Face Value*100
= ($250*2)/$5000*100
= 10%
| Period | Amount | Interest rate @ 10% PVF | Discounted Values | 
| 6 | $ 250.00 | 0.9524 | $ 238.10 | 
| 12 | $ 250.00 | 0.9070 | $ 226.76 | 
| 18 | $ 250.00 | 0.8638 | $ 215.96 | 
| 24 | $ 250.00 | 0.8227 | $ 205.68 | 
| 30 | $ 250.00 | 0.7835 | $ 195.88 | 
| 36 | $ 250.00 | 0.7462 | $ 186.55 | 
| 42 | $ 250.00 | 0.7107 | $ 177.67 | 
| 48 | $ 250.00 | 0.6768 | $ 169.21 | 
| 54 | $ 250.00 | 0.6446 | $ 161.15 | 
| 60 | $ 250.00 | 0.6139 | $ 153.48 | 
| 66 | $ 250.00 | 0.5847 | $ 146.17 | 
| 72 | $ 250.00 | 0.5568 | $ 139.21 | 
| 78 | $ 250.00 | 0.5303 | $ 132.58 | 
| 84 | $ 250.00 | 0.5051 | $ 126.27 | 
| 90 | $ 250.00 | 0.4810 | $ 120.25 | 
| 96 | $ 250.00 | 0.4581 | $ 114.53 | 
| 102 | $ 250.00 | 0.4363 | $ 109.07 | 
| 108 | $ 250.00 | 0.4155 | $ 103.88 | 
| 114 | $ 250.00 | 0.3957 | $ 98.93 | 
| 120 | $ 5,250.00 | 0.3769 | $ 1,978.67 | 
| $ 5,000.00 | 
If the bond is purchased at $3994.25 after one year
convert this price into present value = $3994.25