Question

In: Physics

Surface charge sigma = sigma0 multiplied by cos theta is glued on the surface of a...

Surface charge sigma = sigma0 multiplied by cos theta is glued on the surface of a sphere of radius R. Find the electric field inside and outside the sphere. Calculate the electric dipole moment p of the system. Compare the field outside the sphere with the dipolar field.

Solutions

Expert Solution


Related Solutions

A charge density σ(θ) = 4σ cos (θ) is glued over the surface of a spherical...
A charge density σ(θ) = 4σ cos (θ) is glued over the surface of a spherical shell of radius R. Find the resulting potential inside and outside the sphere.
Prove that 1+ cos theta + cos 2theta + .... cos ntheta = 1/2 + (sin(n+1/2)theta)/2sin(theta/2)
Prove that 1+ cos theta + cos 2theta + .... cos ntheta = 1/2 + (sin(n+1/2)theta)/2sin(theta/2)
1)If, for a given conductor, the local surface charge density is sigma, what is the direction...
1)If, for a given conductor, the local surface charge density is sigma, what is the direction and magnitude of the electric field in that region? 2)What’s the value of the electric field inside a conductor and why? 3)Where is the excess stationary electric charge located for a conductor and why? 4)What is a Gaussian surface? 5)If you increase/decrease the area of a Gaussian surface, how does the net flux through it changes?
Three charged marbles are glued to a nonconducting surface and are placed in the diagram as...
Three charged marbles are glued to a nonconducting surface and are placed in the diagram as shown. The charges of each marble are q1 = 6.25 µC, q2 = 1.70 µC, and q3 = −1.66 µC. Marble q1 is a distance r1 = 3.00 cm to the left of the marble q2, while marble q3 is a distance r3 = 2.00 cm to the right of the marble q2, as shown. Calculate the magnitude of the electric field a distance...
Three charged marbles are glued to a nonconducting surface and are placed in the diagram as...
Three charged marbles are glued to a nonconducting surface and are placed in the diagram as shown. The charges of each marble are q1 = 6.25 µC, q2 = 1.32 µC, and q3 = −1.99 µC. Marble q1 is a distance r1 = 3.00 cm to the left of the marble q2, while marble q3 is a distance r3 = 2.00 cm to the right of the marble q2, as shown. Calculate the magnitude of the electric field a distance...
Find the area enclosed by the function r=1-cos(theta).
Find the area enclosed by the function r=1-cos(theta).
2. A thin disk of radius R and uniform surface charge density sigma rotates about its...
2. A thin disk of radius R and uniform surface charge density sigma rotates about its axis of symmetry with angular velocity omega = omega zhat. (a) What is the current density K(s) where s is the distance from the center? (b) Find B at the center of the disk (z=0, s=0) using Bio-Savart's law. (It's a simple integral). (c) What is the magnetic dipole moment of the disk?
Find the area of the region that lies inside r = 3 cos (theta) and ouside...
Find the area of the region that lies inside r = 3 cos (theta) and ouside r = 2
An equation is given cos(theta/2) − 1 = 0 (a) Find all solutions of the equation.
An equation is given cos(theta/2) − 1 = 0 (a) Find all solutions of the equation.θ = (b) Find the solutions in the interval [0, 2π).θ =  
Explain the difference between pH dependent surface charge and the surface charge produced by isomorphic substitution...
Explain the difference between pH dependent surface charge and the surface charge produced by isomorphic substitution in clay minerals?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT