In: Statistics and Probability
Using the chart below showing the age and salary of each NBA Starting Point Guard, Let x = age and y = salary
1. Is there a correlation between the two variables? Explain.
2. Find the equation of the regression line THEN use it to predict the salary of a 42-year-old point guard.
Age | Salary |
30 | 41358814 |
31 | 40231758 |
29 | 39200000 |
22 | 33930000 |
23 | 33930000 |
31 | 30521115 |
29 | 27977689 |
29 | 26361000 |
33 | 17000450 |
29 | 16000000 |
27 | 14000000 |
28 | 42782880 |
34 | 39932648 |
29 | 35197650 |
27 | 34122650 |
23 | 29331375 |
26 | 21250000 |
29 | 17500000 |
25 | 17500000 |
25 | 12999975 |
27 | 12500000 |
30 | 12000000 |
28 | 9607500 |
31 | 7250000 |
23 | 6655113 |
25 | 4372072 |
22 | 3627677 |
26 | 1892139 |
22 | 1589844 |
19 | 1532398 |
Solution
Note:
Solution are obtained directly using Excel functions as indicated therein.
However, the Back-up Theory is given at the end to get a deeper insight into the subject.
Now, to work out the solution,
1.
Correlation coefficient, r = 0.4236 [using Excel function: Statistical CORREL] Answer 1
2.
The equation of the estimated regression line is: yhat = a + bx.
Where
a = y-intercept = -22464268.84 [using Excel function: Statistical INTERCEPT]
b = slope = 1608476.3696 [using Excel function: Statistical SLOPE]
Substituting the values,
equation of the estimated regression line is: yhat = 1608476.3696x - 22464268.84 Answer 2
Predicted salary of a 42 year-old person is: 45091738.69 Answer 3
[obtained by substituting x = 42 in Answer 2]
Back-up Theory
The linear regression model: Y = β0 + β1X + ε, ………………………………..........................................................………..(1)
where ε is the error term, which is assumed to be Normally distributed with mean 0 and variance σ2.
Estimated Regression of Y on X is given by: Ycap = β0cap + β1capX, …………….................................................……….(2)
where β1cap = Sxy/Sxx = r.√(Syy/Sxx) = r.(SDy/SDx) and β0cap = Ybar – β1cap.Xbar..………………...........…………….…..(3)
Mean X = Xbar = (1/n) Σ(i = 1 to n)xi …………………………….........................................................…………….……….….(4)
Mean Y = Ybar = (1/n) Σ(i = 1 to n)yi …………………………….........................................................…………….……….….(5)
Sxx = Σ(i = 1 to n)(xi – Xbar)2 ………………………............................................................………………………..…………....(6)
Syy = Σ(i = 1 to n)(yi – Ybar)2 ……………………….............................................................……………………..………………(7)
Sxy = Σ(i = 1 to n){(xi – Xbar)(yi – Ybar)} ……………..........................................................………………………………….(8)
Correlation coefficient, r = Sxy/sqrt(Sxx. Syy) ……........................................................……………………………….. (9)
DONE