In: Finance
Suppose the security I and security J have the following historical returns:
Year |
rI |
rJ |
2015 |
20% |
40% |
2016 |
29% |
36% |
2017 |
-12% |
-25% |
What is the standard deviation of the return on portfolio P? (Use n-1 for the denominator.)
9.09% |
||
17.39% |
||
25.82% |
||
28.75% |
||
29.02% |
SD of Portfolio = Sqrt { ( Wi * SD of I )2 + ( Wj * SD of J )2 + 2 * Wi * Wj * COV (I, J) }
SD of Sec = SQRT { sum [ X - AVg X ]2 / n }
Computation of SD o I:-
AVg of I = (20% + 29% -12%) / 3
= 37% / 3 = 12.33%
SD of Sec = SQRT { sum [ X - AVg X ]2 / n-1 }
= sqrt { 0.0929 / 2 }
= sqrt { 0.0464 )
= 0.2155 i,e 21.55%
Computation of SD o J:-
AVg of I = (40% + 36% -25%) / 3
= 51% / 3 = 17.00%
SD of Sec = SQRT { sum [ X - AVg X ]2 / n-1 }
= sqrt { 0.2654 / 2 }
= sqrt { 0.1327 )
= 0.3643 i,e 36.43%
COV ( I,J) = { SUM [ ( I - Avg I ) * ( J - Avg J) ] } / n-1
COV ( I, J) = 0.1515 /2 = 0.07575
Portfolio SD = SQRT { (0.5 * 0.2155)2 + (0.5 * 0.3643)2 + 2 *0.5*0.5*0.07575 }
= SQRT { (0.10775)2 + (0.18215)2 + 0.0379 }
= SQRT { 0.01161 + 0.03318+ 0.0379 }
= SQRT { 0.08266}
=28.75%
Assumption : weights are rqual
pls comment if further assistance is required
=