Question

In: Finance

Ri = αi + βiRM + ei where Ri is the excess return for security i...

Ri = αi + βiRM + ei


where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 3%. Suppose also that there are three securities A, B, and C, characterized by the following data:

Security βi E(Ri) σ(ei)
A 0.5 13 % 26 %
B 0.9 17 12
C 1.3 21 21

a. If σM = 25%, calculate the variance of returns of securities A, B, and C.

b. Now assume that there are an infinite number of assets with return characteristics identical to those of A, B, and C, respectively. What will be the mean and variance of excess returns for securities A, B, and C? (Enter the variance answers as a percent squared and mean as a percentage. Do not round intermediate calculations. Round your answers to the nearest whole number.)

b. How does your answer change if the analyst examines 50 stocks instead of 20 stocks? 100 stocks? (Do not round intermediate calculations. Round your answers to the nearest whole dollar amount.)

Solutions

Expert Solution

a) If = 25%

then the variance of Returns of securities will be:

Formula;

Variance ( ) =  

where;

= variance of market index return = 25%
=Beta variable of security ( A = 0.5 , B= 0.9 , C= 1.3)
= standard deviation of error term ( A= 26% , B= 12%, C=21%)

Now,

Variance of Returns of Security A= ( 252 * 0.52 )+ 262

  = 832.25 or 832

Variance of Returns of Security B= ( 252 * 0.92 )+ 122

  = 650.25 or 650

Variance of Returns of Security C= ( 252 * 1.32 )+ 212

= 1497.25 or 1497

b) When there is an infinite number of assets with return characteristics identical to those of A, B, and C, respectively then a portfolio will have only systematic risk which will give Mean equal to the individual security's return.

= It will become 0 (it is unsystematic risk)

So, now,

The variance of Security will be=

Security A: ( 252 * 0.52 )

= 156.25 or 156

Secuirty B=  ( 252 * 0.92 )

= 506.25 or 506

Security C=  ( 252 * 1.32 )

= 1056.25 or 1056

Security Mean Variance
A 13% 156
B 17% 506
C 21% 1056

[ How does your answer change if the analyst examines 50 stocks instead of 20 stocks? 100 stocks? (Do not round intermediate calculations. Round your answers to the nearest whole dollar amount.)

[Note: Information is missing for the above question] ]


Related Solutions

Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 4%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.3 14% 27% B 1.5 16 13 C 1.7 18 22 a. If σM = 22%, calculate the variance of returns...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 2%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 0.7 7 % 20 % B 0.9 9 6 C 1.1 11 15 a. If σM = 16%, calculate the variance...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 2%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.2 12 % 25 % B 1.3 13 11 C 1.4 14 20 a. If σM = 23%, calculate the variance...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 2%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.3 13 % 22 % B 1.5 15 13 C 1.7 17 16 a. If σM = 20%, calculate the variance...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 4%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.3 14% 27 % B 1.5 16% 13 % C 1.7 18% 22 % a. If σM = 22%, calculate the...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 3%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.0 10 % 23 % B 1.3 13 9 C 1.6 16 18 a. If σM = 20%, calculate the variance...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 3%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.4 14 % 23 % B 1.6 16 14 C 1.8 18 17 a. If σM = 22%, calculate the variance...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM +...
Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 2%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 0.8 10 % 25 % B 1.0 12 10 C 1.2 14 20 a. If σM = 20%, calculate the variance...
Problem 10-8 Assume that security returns are generated by the single-index model, Ri = αi +...
Problem 10-8 Assume that security returns are generated by the single-index model, Ri = αi + βiRM + ei where Ri is the excess return for security i and RM is the market’s excess return. The risk-free rate is 3%. Suppose also that there are three securities A, B, and C, characterized by the following data: Security βi E(Ri) σ(ei) A 1.5 6 % 29 % B 1.7 8 15 C 1.9 10 24 a. If σM = 26%, calculate...
The single-index model for stock i is Ri = 0.01+1.5RM + ei. The single-index model for...
The single-index model for stock i is Ri = 0.01+1.5RM + ei. The single-index model for stock j is Rj = 0.02+0.8RM + ej. The standard deviation of the market return is σM=0.2, the standard deviation of ei is σei=0.3 and the standard deviation of ej is σej=0.4. 1. Calculate the systematic risk, firm-specific risk, and total risk of stock i.  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT