Question

In: Chemistry

Suggest at least 3 solutes for each of these solvents that shows the maximum freezing point...

Suggest at least 3 solutes for each of these solvents that shows the maximum freezing point depression in their solution after mixing them. Solvents: Water, Acetone, Heptane, Toluene

Solutions

Expert Solution

Suggest at least 3 solutes for each of these solvents that shows the maximum freezing point depression in their solution after mixing them. Solvents: Water, Acetone, Heptane, Toluene.

  1. Water: Nacl (common salt), Sugar, Ethylene Glycol
  2. Acetone: Benzene, Dry ice (CO2),
  3. Heptane: cyclohexane, octane, higher alkanes
  4. Toluene: Naphthalen, Benzene, biphenyl compounds, anthracene

The freezing point is the temperature at which solid and liquid can simultaneously coexist, meaning that the escaping tendencies of molecules from the two phases is the same. Suppose now that we dilute the solvent by adding some solute. The escaping tendency of solvent molecules from the liquid phase is now reduced owing to their increased disorder in the solution, but in the solid nothing has changed and the escaping tendency of solvent molecules from this phase remains the same. This means that there will be a net movement of solvent molecules from the solid phase to the liquid; the solid melts. In order to keep the solid from melting, the escaping tendency of molecules from the solid must be reduced. This can be accomplished by reducing the temperature; this lowers the escaping tendency of molecules from both phases, but it affects those in the solid more than those in the liquid, so we eventually reach the new, lower freezing point where the two quantities are again in exact balance and both phases can coexist.


Related Solutions

Calculate the freezing point and boiling point in each solution,assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. A. Calculate the freezing point of a solution containing 10.7 g FeCl3 in 164 g water. B. Calculate the boiling point of the solution above C. Calculate the freezing point of a solution containing 3.7 % KCl by mass (in water). D. Calculate the boiling point of the solution above.  
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. 1) Calculate the freezing point of a solution containing 10.6 g FeCl3 in 151 g water. 2) Calculate the boiling point of a solution above. 3) Calculate the freezing point of a solution containing 6.2% KCl by mass (in water). Express your answer using two significant figures. 4) Calculate the boiling point of a solution above 5) Calculate the freezing point of a solution...
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a.Calculate the freezing point of a solution containing 13.0 g FeCl3 in 164 g water. b.Calculate the boiling point of a solution above. c.Calculate the freezing point of a solution containing 3.9 % KCl by mass (in water). Express your answer using two significant figures. d.Calculate the boiling point of a solution above. e.Calculate the freezing point of a solution containing 0.162 m MgF2....
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. A.) Calculate the freezing point of the solution containing 0.114 m K2S. B.) Calculate the boiling point of the solution above. C.) Calculate the freezing point of the solution containing 22.1 g of CuCl2 in 459 g water. D.) Calculate the boiling point of the solution above. E.) Calculate the freezing point of the solution containing 5.6 % NaNO3 by mass (in water)....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute....
Calculate the freezing point and boiling point in each solution, assuming complete dissociation of the solute. a) Calculate the freezing point of a solution containing 12.2 g FeCl3 in 158 g water. b) Calculate the boiling point of a solution above. c) Calculate the freezing point of a solution containing 4.5 % KCl by mass (in water). d) Calculate the boiling point of a solution above. e) Calculate the freezing point of a solution containing 0.170 m MgF2. f) Calculate...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the...
Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. Use Kf=1.86∘C/m and Kb=0.512∘C/m. Part A Calculate the freezing point of the solution containing 0.118 m K2S. Part B Calculate the boiling point of the solution above. Part C Calculate the freezing point of the solution containing 25.2 g of CuCl2 in 480 g water. Part D Calculate the boiling point of the solution above. Part E Calculate the freezing point of the...
Constants | Periodic Table Calculate the freezing point of each of the following solutions: Part A...
Constants | Periodic Table Calculate the freezing point of each of the following solutions: Part A 0.560 mole of lactose, a nonelectrolyte, added to 1.00 kg of water Express your answer to three significant figures and include the appropriate units. nothingnothing SubmitRequest Answer Part B 44.0 g of KCl, a strong electrolyte, dissolved in 1.00 kg of water Express your answer to three significant figures and include the appropriate units. nothingnothing SubmitRequest Answer Part C 1.3 moles of K3PO4, a...
Calculate the molality for each of the following solutions. Then, calculate the freezing-point depression ?TF =...
Calculate the molality for each of the following solutions. Then, calculate the freezing-point depression ?TF = KFcm produced by each of the salts. (Assume the density of water is 1.00 g/mL and KF = 1.86
caffeine the freezing point of a solution prepared by dissolving 150 x 10^-3 g of caffeine...
caffeine the freezing point of a solution prepared by dissolving 150 x 10^-3 g of caffeine in 10.0 g of camphor is lower by 3.07C than that of pure camphor (Kf = 39.7 C/m) what is the molar mass of caffeine? Elemental analysis of caffeine yields the following results: 49.49% C, 5.15% H, and the remainder is 0. What is th molecular formula of caffeine? Please explain the steps taken to get both answers. Thank you
Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y)=x^3+3y^2+6xy
  Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y)=x^3+3y^2+6xy
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT