In: Chemistry
A).
Let us use the Clausius-Clapeyron Equation:
ln (P1 / P2) = (ΔH / R) (1/T2 - 1/T1) where ΔH = heat of vaporization in J/mol
Here P1 = 0.45MPa, T1 = 100 + 273 = 373 K
and P2 = 0.782, T2 = 125 +273 = 398 K
and R = 8.31
hence, ln (0.45/ 0.782) = (ΔH / 8.31) (1/398 - 1/373)
or -0.553 = (ΔH / 8.31) x (-1.68 x 10-4)
therefore ΔH = 27354 J/mol
Now let the normal boiling temp. be T, then Vap. Presure at T is 0.1 MPa i.e atmospheric pressure
Hence
ln (0.45/ 0.1) = (27354 / 8.31) (1/T - 1/373)
or (1/T - 1/373) = 4.57 x 10-4.
or 1/T = 3.14 x 10-3.
therefore T = 318.47 K = 45.47 oC.
B) The acentric factor is defined as:
where Pc is the critical pressure and Pσ is the vapor pressure at temperature T where T/Tc = 0.7 and Tc is the critical temperature.
Here T = Tc x 0.7 = 552 x 0.7= 386.4 K
hence
ln (0.45/ P) = (27354 / 8.31) (1/386.4 - 1/373)
or ln (0.45/ P) = -0.306
therefore 0.45/ P = e-0.306 = 0.736
so, P = 0.45/ 0.736 = 0.611 MPa
Therefore acentric factor = -1.00 - log10(0.611/ 7.80) = -1.00 - (-1.11) = 0.11