In: Economics
Solution:
We first find the profit function
Profit = total revenue - total cost
Given the Total revenue (TR) and total cost (TC) functions, we have profit function as follows:
Profit, P = (802.5*Q - 10*Q2) - ((2/3)*Q3 - 30*Q2 + 672*Q + 4000)
P = -(2/3)*Q3 + 20*Q2 + 130.5*Q - 4000
(a) To find the level of output which maximizes the total profit, we will solve the first order condition (FOC): = 0
So, the marginal profit, = 3*(-2/3)*Q3-1 + 2*20*Q2-1 + 130.5*Q1-1 + 0
= -2*Q2 + 40*Q + 130.5
So, using FOC, we have, -2*Q2 + 40*Q + 130.5 = 0
Solving this quadratic equation, we get: Q = [-(40) (+/-) [(40)2 - 4(-2)(130.5)]1/2]/(2*(-2))
Q = [-40 (+/-) 51.42]/(-4)
So, Q = (- 40 + 51.42)/(-4) = -2.855 OR Q = (- 40 - 51.42)/(-4) = 22.855
Since, Q is quantity, it cannot be negative, so rejecting the negative value, we have final answer as Q = 22.855 units
(b) Profit at Q = 22.855, by substituting in the profit function, we have
P = -(2/3)*Q3 + 20*Q2 + 130.5*Q - 4000
P = -(2/3)*(22.855)3 + 20*(22.855)2 + 130.5*(22.855) - 4000
P = -7958.89 + 10447.02 + 2982.58 - 4000
Profit = $1,470.71 (approx)