Question

In: Advanced Math

Let A = 2 1 1 1 2 1 1 1 2 (a) Find the characteristic...

Let A = 2 1 1

1 2 1

1 1 2

(a) Find the characteristic polynomial PA(λ) of A and the eigenvalues of A. For convenience, as usual, enumerate the eigenvalues in decreasing order λ1 ≥ λ2 ≥ λ3.

(b) For each eigenvalue λ of A find a basis of the corresponding eigenspace V (λ). Determine (with a motivation) whether V (λ) is a line or a plane through the origin. If some of the spaces V (λ) is a plane find an equation of this plane.

(c) Find a basis of R 3 consisting of eigenvectors if such basis exist. (Explain why or why not). Is the matrix A diagonalizable? If ”yes”, then write down a diagonalizing matrix P, and a diagonal matrix Λ such that A = PΛP −1 , P −1AP = Λ. Explain why the matrix P is invertible but do not compute P −1 .

(d) Consider the eigenvalues λ1 > λ3. Is it true that the orthogonal complements of the eigenspaces satisfy (Vλ1 ) ⊥ = Vλ3 , (Vλ3 ) ⊥ = Vλ1 ? Why or why not??

Solutions

Expert Solution


Related Solutions

D^2 (D + 1)y(t)= (D^2 +2)f(t) a.) Find the characteristic polynomial, characteristic equation, characteristic roots, and...
D^2 (D + 1)y(t)= (D^2 +2)f(t) a.) Find the characteristic polynomial, characteristic equation, characteristic roots, and characteristic modes of the system. b.) Find y_o(t), the zero-input component of response y(t) for t>=0, if the the initial conditions are   y_0 (0) = 4, y_0' (0) = 3, and y_0'' (0) = -1
Question2. Let A = [2 1 1 1 2 1 1 1 2 ]. (a) Find...
Question2. Let A = [2 1 1 1 2 1 1 1 2 ]. (a) Find the characteristic polynomial PA(λ) of A and the eigenvalues of A. For convenience, as usual, enumerate the eigenvalues in decreasing order λ1 ≥ λ2 ≥ λ3. (b) For each eigenvalue λ of A find a basis of the corresponding eigenspace V (λ). Determine (with a motivation) whether V (λ) is a line or a plane through the origin. If some of the spaces V...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the eigenvalues of A and bases of the corresponding eigenspaces. (b) Which of the eigenspaces is a line through the origin? Write down two vectors parallel to this line. (c) Find a plane W ⊂ R 3 such that for any w ∈ W one has Aw ∈ W , or explain why such a plain does not exist. (d) Write down explicitly a diagonalizing...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the eigenvalues of A and bases of the corresponding eigenspaces. (b) Which of the eigenspaces is a line through the origin? Write down two vectors parallel to this line. (c) Find a plane W ⊂ R 3 such that for any w ∈ W one has Aw ∈ W , or explain why such a plain does not exist. (d) Write down explicitly a diagonalizing...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 2 −2 5 0 3 −2 0 −1 2 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
Let X = [1, 0, 2, 0]tand Y = [1, −1, 0, 2]t. (a) Find a...
Let X = [1, 0, 2, 0]tand Y = [1, −1, 0, 2]t. (a) Find a system of two equations in four unknowns whose solution set is spanned by X and Y. (b) Find a system of three equations in four unknowns whose solution set is spanned by X and Y. (c) Find a system of four equations in four unknowns that has the set of vectors of the form Z + aX + bY as its general solution where...
let E be a finite extension of a field F of prime characteristic p, and let...
let E be a finite extension of a field F of prime characteristic p, and let K = F(Ep) be the subfield of E obtained from F by adjoining the pth powers of all elements of E. Show that F(Ep) consists of all finite linear combinations of elements in Ep with coefficients in F.
let p = 1031, Find the number of solutions to the equation x^2 -2 y^2=1 (mod...
let p = 1031, Find the number of solutions to the equation x^2 -2 y^2=1 (mod p), i.e., the number of elements (x,y), x,y=0,1,...,p-1, which satisfy x^2 - 2 y^2=1 (mod p)
Let F be a field, and recall the notion of the characteristic of a ring; the...
Let F be a field, and recall the notion of the characteristic of a ring; the characteristic of a field is either 0 or a prime integer. Show that F has characteristic 0 if and only if it contains a copy of rationals and then F has characteristic p if and only if it contains a copy of the field Z/pZ. Show that (in both cases) this determines the smallest subfield of F.
let f(x)=(x^2 + 2x) / (x - 1)^2 a) Find the domain and if any intercepts...
let f(x)=(x^2 + 2x) / (x - 1)^2 a) Find the domain and if any intercepts b)find the horizontal asymptotes c) find the vertical asymptotes d)find the intervals on which the function is increasing and decreasing and identify the function's local extreme values, critical values e)identify the concavity and if any the point of inflection f) graph the function
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT