In: Statistics and Probability
a. Estimate and report OLS parameter estimates for the equation Mr=α+β1exec+β2south+β3 ue+β4capital+β5pcy+ε
b. Plot mr on exec, mr on ue, and mr on pcy.
c. Plot the fitted values for mr on exec, mr on ue, and mr on pcy.
d. Plot the errors for errors on exec, errors on ue, and errors on pcy.
Please download data from the link below as csv file
https://docs.google.com/spreadsheets/d/1gjvCRmxkIu7vxlGGB5ej7qMhiNzHnGSz5yX2O-TYJdI/edit?usp=sharing data is provided on link, please download as csv file
The Data
mr | exec | south | ue | capital | pcy |
11.6 | 0 | 1 | 7.5 | 1 | 13.53 |
9 | 0 | 0 | 7.6 | 0 | 18.223 |
8.6 | 2 | 0 | 6.2 | 1 | 14.285 |
10.2 | 0 | 1 | 6.2 | 1 | 12.634 |
13.1 | 1 | 0 | 9.2 | 1 | 17.295 |
5.8 | 0 | 0 | 5.2 | 1 | 16.981 |
6.3 | 0 | 0 | 6.2 | 1 | 22.236 |
5 | 0 | 1 | 5.3 | 1 | 17.261 |
78.5 | 0 | 1 | 8.5 | 1 | 23.302 |
8.9 | 3 | 1 | 7 | 1 | 16.311 |
11.4 | 2 | 1 | 5.8 | 1 | 15.205 |
3.8 | 0 | 0 | 4.2 | 0 | 18.566 |
2.9 | 0 | 0 | 6.1 | 1 | 13.833 |
11.4 | 0 | 0 | 7.4 | 1 | 17.82 |
7.5 | 0 | 0 | 5.3 | 1 | 15.176 |
2.3 | 0 | 0 | 4 | 1 | 14.435 |
6.4 | 0 | 0 | 5 | 1 | 15.679 |
6.6 | 0 | 1 | 6.2 | 1 | 13.34 |
20.3 | 1 | 1 | 7.4 | 1 | 13.122 |
1.6 | 0 | 0 | 7.9 | 0 | 14.834 |
12.7 | 0 | 1 | 6.2 | 1 | 18.885 |
3.9 | 0 | 0 | 6.9 | 1 | 19.281 |
9.8 | 0 | 0 | 7 | 0 | 16.259 |
3.4 | 0 | 0 | 5.1 | 0 | 16.571 |
13.5 | 0 | 1 | 6.3 | 1 | 11.647 |
11.3 | 4 | 0 | 6.4 | 1 | 15.448 |
3 | 0 | 0 | 6 | 1 | 13.725 |
11.3 | 0 | 1 | 4.9 | 1 | 14.747 |
1.7 | 0 | 0 | 4.3 | 0 | 13.485 |
3.9 | 0 | 0 | 2.6 | 1 | 15.539 |
10.4 | 0 | 0 | 7.2 | 1 | 18.084 |
2 | 0 | 0 | 6.6 | 0 | 17.66 |
5.3 | 0 | 0 | 7.4 | 1 | 21.229 |
8 | 0 | 0 | 7.5 | 1 | 12.912 |
13.3 | 0 | 0 | 7.7 | 1 | 19.608 |
6 | 0 | 0 | 6.5 | 1 | 15.558 |
8.4 | 0 | 1 | 6 | 1 | 13.449 |
4.6 | 0 | 0 | 7.2 | 1 | 15.353 |
6.8 | 0 | 0 | 7 | 1 | 16.8 |
3.9 | 0 | 0 | 7.7 | 0 | 16.78 |
10.3 | 0 | 1 | 7.5 | 1 | 13.318 |
3.4 | 0 | 0 | 3.5 | 1 | 14.122 |
10.2 | 0 | 1 | 5.7 | 1 | 14.565 |
11.9 | 17 | 1 | 7 | 1 | 15.122 |
3.1 | 0 | 0 | 3.9 | 1 | 12.746 |
3.6 | 5 | 0 | 5.4 | 1 | 15.353 |
8.3 | 1 | 1 | 5 | 1 | 17.103 |
6.9 | 0 | 1 | 10.8 | 1 | 12.772 |
5.2 | 0 | 0 | 7.5 | 1 | 17.199 |
4.4 | 0 | 0 | 4.7 | 0 | 15.645 |
3.4 | 0 | 0 | 5.4 | 1 | 15.576 |
The regression analysis (Done in Excel... Data > Data Analysis > Regression)
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.638242393 | |||||
R Square | 0.407353352 | |||||
Adjusted R Square | 0.341503724 | |||||
Standard Error | 8.697075215 | |||||
Observations | 51 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 5 | 2339.561 | 467.9123 | 6.186115 | 0.000191555 | |
Residual | 45 | 3403.76 | 75.63912 | |||
Total | 50 | 5743.322 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -35.00801648 | 9.41774 | -3.71724 | 0.000555 | -53.97631801 | -16.0397 |
exec | -0.145458912 | 0.494027 | -0.29444 | 0.769779 | -1.14047937 | 0.849562 |
south | 9.768244592 | 2.898035 | 3.370644 | 0.001548 | 3.93130301 | 15.60519 |
ue | 1.278281389 | 0.86191 | 1.48308 | 0.145023 | -0.457694173 | 3.014257 |
capital | 2.444519824 | 3.390438 | 0.721004 | 0.474636 | -4.384173815 | 9.273213 |
pcy | 1.920234313 | 0.521169 | 3.684474 | 0.000613 | 0.87054571 | 2.969923 |
1. The regression equation
Mr = -35.01 - 0.15 (Exec) + 9.77 (South) + 1.28 (Ue) + 2.44 (Capital) + 1.92 (Pcy)
2.