In: Statistics and Probability
Listed below are alumnus’s contribution (in dollars) and the
years the alumnus has been out
of school for a small college.
Years, x | 1 | 5 | 3 | 10 | 7 | 6 |
Contribution y, $ | 500 | 100 | 300 | 50 | 75 | 80 |
a) Find the value of the linear correlation coefficient r and
use a significance level of α = 0.05 to
determine whether there is a significant linear correlation between
the two variables.
b) Find the best predicted value for the contribution of an alumnus after 4 years.
X | Y | XY | X² | Y² |
1 | 500 | 500 | 1 | 250000 |
5 | 100 | 500 | 25 | 10000 |
3 | 300 | 900 | 9 | 90000 |
10 | 50 | 500 | 100 | 2500 |
7 | 75 | 525 | 49 | 5625 |
6 | 80 | 480 | 36 | 6400 |
Ʃx = | 32 |
Ʃy = | 1105 |
Ʃxy = | 3405 |
Ʃx² = | 220 |
Ʃy² = | 364525 |
Sample size, n = | 6 |
x̅ = Ʃx/n = 32/6 = | 5.333333333 |
y̅ = Ʃy/n = 1105/6 = | 184.1666667 |
SSxx = Ʃx² - (Ʃx)²/n = 220 - (32)²/6 = | 49.33333333 |
SSyy = Ʃy² - (Ʃy)²/n = 364525 - (1105)²/6 = | 161020.8333 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 3405 - (32)(1105)/6 = | -2488.33333 |
a)
Correlation coefficient, r = SSxy/√(SSxx*SSyy)
= -2488.33333/√(49.33333*161020.83333) = -0.8829
Null and alternative hypothesis:
Ho: ρ = 0 ; Ha: ρ ≠ 0
Test statistic :
t = r*√(n-2)/√(1-r²) = -0.8829 *√(6 - 2)/√(1 - -0.8829²) = -3.76
df = n-2 = 4
p-value = T.DIST.2T(ABS(-3.76), 4) = 0.0198
Conclusion:
p-value < α Reject the null hypothesis. There is a correlation between x and y.
b)
Slope, b = SSxy/SSxx = -2488.33333/49.33333 = -50.43919
y-intercept, a = y̅ -b* x̅ = 184.16667 - (-50.43919)*5.33333 = 453.17568
Regression equation :
ŷ = 453.1757 + (-50.4392) x
Predicted value of y at x = 4
ŷ = 453.1757 + (-50.4392) * 4 = 251.4189