Question

In: Statistics and Probability

Suppose the waiting time between earthquakes in B is an exponential random variable. On average, B...

Suppose the waiting time between earthquakes in B is an exponential random variable. On average, B gets a really bad earthquake every 100 years. Given that the last really bad earthquake was 99 years ago, compute the probability we get a really bad earthquake within one year from now.

Answer is 0.00995

Solutions

Expert Solution

Let X be the time between two earthquakes              
Then, X follows exponential distribution with parameter λ = 1/100 earthquakes per year              
λ = 1/100              
An Exponential distribution is a memory less distribution.              
Thus, the occurrence of an earlier earthquake does not affect the probability of occurrence of the next earthquake              
To find P(next bad earthquake will be in 1 year )              
that is to find, P(X < 1)              
We use Excel function EXPON.DIST to find the probability              
P(X < 1) = EXPON.DIST(1, λ, TRUE)              
   = EXPON.DIST(1, 1/100, TRUE)          
   = 0.00995          


P(next bad earthquake will be in 1 year ) =    

--------------------------------------------------------------------------------------------------------------------
If you are satisfied with the solution, kindly give a thumbs up.


Related Solutions

Suppose X is an exponential random variable with mean 5 and Y is an exponential random...
Suppose X is an exponential random variable with mean 5 and Y is an exponential random variable with mean 10. X and Y are independent. Determine the coefficient of variation of X + Y
The time between successive arrivals of calls to emergency service is random variable which follows exponential...
The time between successive arrivals of calls to emergency service is random variable which follows exponential distribution. It was observed that on average calls arrive to emergency service every four minutes (1 / λ = 4min) and average number of calls in one minute is λ = 0.25 calls/ 1 min The probability that the time between successive calls is less than 2 minutes is ______ The probability that the time between successive calls is less than 2 minutes is...
The random variable X milliseconds is the total access time (waiting time + reading time) to...
The random variable X milliseconds is the total access time (waiting time + reading time) to obtain a block of information from a computer disk. X is evenly distributed between 0 and 12 milliseconds. Before making a determined task, the computer must access 12 different information blocks from the disk. (The access times for different blocks are independent one of the other.) The total access time for all information is a random variable A milliseconds. (1) What is the E...
Lifetime of a particular laptop is exponential random variable with average of 5 years. A company...
Lifetime of a particular laptop is exponential random variable with average of 5 years. A company orders 100 of such laptops. Find the probability that there are more than 20 laptops still in operation after 6 years from the date of purchase. (Hint: First compute the probability of one laptop still being in operation after 6 years. That will be the probability of ”success”. Then compute the probability that you’ve at least 20 out of 100 with that property.)
The time required to service a particular machine is an exponential random variable with mean 10...
The time required to service a particular machine is an exponential random variable with mean 10 minutes. If a repair person has 35 machines to service, compute the approximate probability that all the work can be completed in under 5 hours.
Let the random variable X denote the time (hours) for which a part is waiting for...
Let the random variable X denote the time (hours) for which a part is waiting for the beginning of the inspection process since its arrival at the inspection station, and let Y denote the time (hours) until the inspection process is completed since its arrival at the inspection station. Since both X and Y measure the time since the arrival of the part at the inspection station, always X < Y is true. The joint probability density function for X...
Suppose the time between buses at a particular stop is a positively skewed random variable with...
Suppose the time between buses at a particular stop is a positively skewed random variable with an average of 60 minutes and standard deviation of 6 minutes. Suppose the time between buses at this stop is measured for a randomly selected week, resulting in a random sample of n = 36 times. The average of this sample, X, is a random variable that comes from a specific probability distribution. (a)Which of the following is true about the distribution of mean...
The waiting time until a courier is received is followed by an exponential distribution with an...
The waiting time until a courier is received is followed by an exponential distribution with an expected waiting time of 5 days. Find the probability that the mean waiting time for the delivery time of 50 couriers exceeds 6 days b. There are 200 questions to an FRCS exam. Suppose the probability of having through question correct is 0.6, no matter other questions. If the cutoff for a grade B is 80%, what is the likelihood of a "B"
Suppose that the average waiting time for a patient at a physician's office is just over...
Suppose that the average waiting time for a patient at a physician's office is just over 29 minutes. In order to address the issue of long patient wait times, some physicians' offices are using wait-tracking systems to notify patients of expected wait times. Patients can adjust their arrival times based on this information and spend less time in waiting rooms. The following data show wait times (minutes) for a sample of patients at offices that do not have a wait-tracking...
Suppose that the average waiting time for a patient at a physician's office is just over...
Suppose that the average waiting time for a patient at a physician's office is just over 29 minutes. In order to address the issue of long patient wait times, some physicians' offices are using wait-tracking systems to notify patients of expected wait times. Patients can adjust their arrival times based on this information and spend less time in waiting rooms. The following data show wait times (in minutes) for a sample of patients at offices that do not have a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT